-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathriddle.py
260 lines (221 loc) · 9.56 KB
/
riddle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""riddle.py
Run various deep learning classification pipelines with k-fold
cross-validation. Summarize discriminatory features using DeepLIFT contribution
scores and paired t-tests with Bonferroni adjustment for multiple comparisons.
Requires: Keras, NumPy, scikit-learn, RIDDLE (and their dependencies)
Author: Ji-Sung Kim, Rzhetsky Lab
Copyright: 2018, all rights reserved
"""
from __future__ import print_function
import argparse
import pickle
import time
import warnings
import numpy as np
from utils import evaluate
from utils import get_base_out_dir
from utils import get_param_path
from utils import get_preprocessed_data
from utils import recursive_mkdir
from utils import select_features
from utils import subset_reencode_features
SEED = 109971161161043253 % 8085
parser = argparse.ArgumentParser(
description='Run RIDDLE (deep classification pipeline).')
parser.add_argument(
'--data_fn', type=str, default='dummy.txt',
help='Filename of text data file.')
parser.add_argument(
'--prop_missing', type=float, default=0.0,
help='Proportion of feature observations to simulate as missing.')
parser.add_argument(
'--max_num_feature', type=int, default=-1,
help='Maximum number of features to use; with the default of -1, use all'
'available features')
parser.add_argument(
'--feature_selection', type=str, default='random',
help='Method to use for feature selection.')
parser.add_argument(
'--which_half', type=str, default='both',
help='Which half of experiments to perform; values = first, last, both')
parser.add_argument(
'--data_dir', type=str, default='_data',
help='Directory of data files.')
parser.add_argument(
'--cache_dir', type=str, default='_cache',
help='Directory where to cache files.')
parser.add_argument(
'--out_dir', type=str, default='_out',
help='Directory where to save output files.')
def run(x_unvec, y, idx_feat_dict, idx_class_dict, icd9_descript_dict,
num_feature, max_num_feature, num_class, feature_selection, k_idx, k,
params, perm_indices, full_out_dir):
"""Run a RIDDLE classification pipeline for a single k-fold partition.
Arguments:
x_unvec: [[int]]
feature indices that have not been vectorized; each inner list
collects the indices of features that are present (binary on)
for a sample
y: [int]
list of class labels as integer indices
idx_feat_dict: {int: string}
dictionary mapping feature indices to features
idx_class_dict: {int: string}
dictionary mapping class indices to classes
icd9_descript_dict: {string: string}
dictionary mapping ICD9 codes to description text
num_feature: int
number of features present in the dataset
max_num_feature: int
maximum number of features to use
num_class: int
number of classes
feature_selection: string
feature selection method; values = {'random', 'frequency', 'chi2'}
k_idx: int
index of the k-fold partition to use
k: int
number of partitions for k-fold cross-validation
params: [{string: ?}]
list of dictionary mapping parameter names to values for each
k-fold partition
perm_indices: np.ndarray, int
array of indices representing a permutation of the samples with
shape (num_sample, )
full_out_dir: string
directory where outputs (e.g., results) should be saved
"""
from keras import backend as K
from riddle import emr, feature_importance
from riddle.models import MLP
print('Partition k = {}'.format(k_idx))
print()
x_train_unvec, y_train, x_val_unvec, y_val, x_test_unvec, y_test = (
emr.get_k_fold_partition(x_unvec, y, k_idx=k_idx, k=k,
perm_indices=perm_indices))
if max_num_feature > 0: # select features and re-encode
feat_encoding_dict, idx_feat_dict = select_features(
x_train_unvec, y_train, idx_feat_dict,
method=feature_selection, num_feature=num_feature,
max_num_feature=max_num_feature)
x_train_unvec = subset_reencode_features(x_train_unvec,
feat_encoding_dict)
x_val_unvec = subset_reencode_features(x_val_unvec,
feat_encoding_dict)
x_test_unvec = subset_reencode_features(x_test_unvec,
feat_encoding_dict)
num_feature = max_num_feature
# set up
max_num_epoch = -1
if 'debug' in full_out_dir:
max_num_epoch = 3
model = MLP(num_feature=num_feature, num_class=num_class,
max_num_epoch=max_num_epoch, **params[k_idx])
# train and test
start = time.time()
model.train(x_train_unvec, y_train, x_val_unvec, y_val)
y_test_probas = model.predict_proba(x_test_unvec)
runtime = time.time() - start
print('Completed training and testing in {:.4f} seconds'.format(runtime))
print('-' * 72)
print()
# evaluate model performance
evaluate(y_test, y_test_probas, runtime, num_class=num_class,
out_dir=full_out_dir)
model.save_model(path=full_out_dir + '/model.h5')
K.clear_session()
print('Finished with partition k = {}'.format(k_idx))
print('=' * 72)
print()
def run_kfold(data_fn, prop_missing=0., max_num_feature=-1,
feature_selection='random', k=10, which_half='both',
data_dir='_data', cache_dir='_cache', out_dir='_out'):
"""Run several RIDDLE classification pipelines a la k-fold cross-validation.
Arguments:
data_fn: string
data file filename
prop_missing: float
proportion of feature observations which should be randomly masked;
values in [0, 1)
max_num_feature: int
maximum number of features to use
feature_selection: string
feature selection method; values = {'random', 'frequency', 'chi2'}
k: int
number of partitions for k-fold cross-validation
which_half: str
which half of experiments to do; values = {'first', 'last', 'both'}
data_dir: string
directory where data files are located
cache_dir: string
directory where cached files (e.g., saved parameters) are located
out_dir: string
outer directory where outputs (e.g., results) should be saved
"""
start = time.time()
base_out_dir = get_base_out_dir(out_dir, 'riddle', data_fn, prop_missing,
max_num_feature, feature_selection)
recursive_mkdir(base_out_dir)
# get common data
x_unvec, y, idx_feat_dict, idx_class_dict, icd9_descript_dict, perm_indices = (
get_preprocessed_data(data_dir, data_fn, prop_missing=prop_missing))
num_feature = len(idx_feat_dict)
num_class = len(idx_class_dict)
# print/save value-sorted dictionary of classes and features
class_mapping = sorted(idx_class_dict.items(), key=lambda key: key[0])
with open(base_out_dir + '/class_mapping.txt', 'w') as f:
print(class_mapping, file=f)
with open(base_out_dir + '/feature_mapping.txt', 'w') as f:
for idx, feat in idx_feat_dict.items():
f.write('{}\t{}\n'.format(idx, feat))
try: # load saved parameters
param_path = get_param_path(cache_dir, 'riddle', data_fn, prop_missing,
max_num_feature, feature_selection)
with open(param_path, 'rb') as f:
params = pickle.load(f)
# for legacy compatability
new_params = {}
for k_idx, param in params.items():
if 'nb_hidden_layers' in param:
param['num_hidden_layer'] = param.pop('nb_hidden_layers')
if 'nb_hidden_nodes' in param:
param['num_hidden_node'] = param.pop('nb_hidden_nodes')
new_params[k_idx] = param
params = params
except:
warnings.warn('Cannot load parameters from: {}\n'.format(param_path) +
'Need to do parameter search; run parameter_search.py')
raise
if which_half == 'both':
loop = range(0, k)
elif which_half == 'first':
loop = range(0, k / 2)
elif which_half == 'last':
loop = range(k / 2, k)
else:
raise ValueError('Unknown which_half: {}'.format(which_half))
for k_idx in loop:
sub_out_dir = '{}/k_idx={}'.format(base_out_dir, k_idx)
recursive_mkdir(sub_out_dir)
run(x_unvec, y, idx_feat_dict, idx_class_dict, icd9_descript_dict,
num_feature=num_feature, max_num_feature=max_num_feature,
num_class=num_class, feature_selection=feature_selection,
k_idx=k_idx, k=k, params=params, perm_indices=perm_indices,
full_out_dir=sub_out_dir)
print('This k-fold riddle multipipeline run script took {:.4f} seconds'
.format(time.time() - start))
def main():
"""Main method."""
np.random.seed(SEED) # for reproducibility, must be before Keras imports!
run_kfold(data_fn=FLAGS.data_fn,
prop_missing=FLAGS.prop_missing,
max_num_feature=FLAGS.max_num_feature,
feature_selection=FLAGS.feature_selection,
which_half=FLAGS.which_half,
data_dir=FLAGS.data_dir,
cache_dir=FLAGS.cache_dir,
out_dir=FLAGS.out_dir)
# if run as script, execute main
if __name__ == '__main__':
FLAGS, _ = parser.parse_known_args()
main()