-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
379 lines (294 loc) · 14.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
from sklearn.model_selection import train_test_split
from skimage.feature import hog
from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler
from scipy.ndimage.measurements import label
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from moviepy.editor import VideoFileClip
from IPython.display import HTML
import numpy as np
import pickle
import cv2
import glob
import time
# %matplotlib inline
print('...')
car_images = glob.glob('dataset/vehicles/**/*.png')
noncar_images = glob.glob('dataset/non-vehicles/**/*.png')
print("The number of vehicle dataset: ", len(car_images))
print("The number of non-vehicle dataset: ", len(noncar_images))
figure, axs = plt.subplots(6, 6, figsize=(16, 16))
figure.subplots_adjust(hspace=.2, wspace=.001)
axs = axs.ravel() # change to a 1d array to handle simply
# visualize car images
for i in np.arange(18):
random_index = np.random.randint(0, len(car_images))
image = cv2.imread(car_images[random_index])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
axs[i].imshow(image)
axs[i].axis('off')
axs[i].set_title('car', fontsize=11)
# visualize noncar images
for i in np.arange(18, 36):
random_index = np.random.randint(0, len(noncar_images))
image = cv2.imread(noncar_images[random_index])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
axs[i].imshow(image)
axs[i].axis('off')
axs[i].set_title('noncar', fontsize=11)
def get_hog_features(image, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True):
# Call with two outputs if vis==True
if vis == True:
features, hog_image = hog(image, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=False, visualize=vis,
feature_vector=feature_vec)
return features, hog_image
# Otherwise, call with one output
else:
features = hog(image, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=False, visualize=vis,
feature_vector=feature_vec)
return features
print('...')
car_image = mpimg.imread(car_images[5])
_, car_hog = get_hog_features(car_image[:, :, 2], orient=9, pix_per_cell=8, cell_per_block=8, vis=True, feature_vec=True)
noncar_image = mpimg.imread(noncar_images[5])
_, noncar_hog = get_hog_features(noncar_image[:, :, 2], orient=9, pix_per_cell=8, cell_per_block=8, vis=True, feature_vec=True)
# Visualize HOG features
figure, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, figsize=(7,7))
figure.subplots_adjust(hspace=.4, wspace=.2)
ax1.imshow(car_image)
ax1.axis('off')
ax1.set_title('Car', fontsize=15)
ax2.imshow(car_hog, cmap='gray')
ax2.axis('off')
ax2.set_title('Car HOG', fontsize=15)
ax3.imshow(noncar_image)
ax3.axis('off')
ax3.set_title('Non-Car', fontsize=15)
ax4.imshow(noncar_hog, cmap='gray')
ax4.axis('off')
ax4.set_title('Non-Car HOG', fontsize=15)
# Define a function to extract features from a list of image locations
# This function could also be used to call bin_spatial() and color_hist() (as in the lessons)
# to extract flattened spatial color features and color histogram features and combine them all (making use of StandardScaler)
# to be used together for classification
def extract_features(images, color_space='RGB', orient=9, pix_per_cell=8, cell_per_block=2, hog_channel=0):
# Create a list to append feature vectors to
features = []
# Iterate through the list of images
for file in images:
# Read in each one by one
image = mpimg.imread(file)
# Apply color conversion if other than 'RGB'
if color_space != 'RGB':
if color_space == 'HSV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
elif color_space == 'LUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2LUV)
elif color_space == 'HLS':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
elif color_space == 'YUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
elif color_space == 'YCrCb':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb)
else:
feature_image = np.copy(image)
# Call get_hog_features() with vis=False, feature_vec=True
if hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_feature = get_hog_features(feature_image[:, :, channel], orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True) # type: list
hog_features.append(hog_feature) # type: list
hog_features = np.ravel(hog_features) # type: ndarray (change a list to 1d ndarray)
else:
hog_features = get_hog_features(feature_image[:, :, hog_channel], orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True)
# Append the new feature vector to the features list
features.append(hog_features)
# Return list of feature vectors
return features
print("...")
# little confused about data type. check this out
a = np.array([1,2,3])
print("a: ", a)
print("a.type: ",type(a))
a2 = []
a2.append(a)
print("a2: ", a2)
print("a2.type: ", type(a2))
a3 = np.ravel(a2)
print("a3: ", a3)
print("type(a3): ", type(a3))
# Feature extraction parameters
colorspace = 'YUV' # Can be RGB, HSV, LUV, HLS, YUV, YCrCb
orient = 11
pix_per_cell = 16
cell_per_block = 2
hog_channel = 'ALL' # Can be 0, 1, 2, or 'ALL'
t = time.time()
car_features = extract_features(car_images, color_space=colorspace, orient=orient,
pix_per_cell=pix_per_cell, cell_per_block=cell_per_block, hog_channel=hog_channel)
notcar_features = extract_features(noncar_images, color_space=colorspace, orient=orient,
pix_per_cell=pix_per_cell, cell_per_block=cell_per_block, hog_channel=hog_channel)
t2 = time.time()
print(round(t2 - t, 2), "seconds to extract HOG features...")
# Create an array stack of feature vectors
X = np.vstack((car_features, notcar_features)).astype(np.float64)
# Fit a per-column scaler - this will be necessary if combining different types of features (HOG + color_hist + bin_spatial)
# X_scaler = StandardScaler().fit(X)
# Apply the scaler to X
# scaled_X = X_scaler.transform(X)
# Define the labels vector
y = np.hstack((np.ones(len(car_features)), np.zeros(len(notcar_features))))
# Split up data into randomized training and test sets
rand_state = np.random.randint(0, 100)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=rand_state)
# Fit a per-column scaler - this will be necessary if combining different types(scale) of features (HOG + color_hist + bin_spatial)
# X_scaler = StandardScaler().fit(X_train)
# Apply the scaler to X
# X_train = X_scaler.transform(X_train)
# X_test = X_scaler.transform(X_test)
print("Using:", colorspace,"Colorspace,", orient, 'orientations,', pix_per_cell, 'pixels/cell, ', cell_per_block, 'cells/block')
print("Feature vector length: ", len(X_train[0]))
# Use a linear SVC
svc = LinearSVC()
# Check the training time for the SVC
t = time.time()
svc.fit(X_train, y_train)
t2 = time.time()
print(round(t2 - t, 2), 'seconds to train SVM Classifier.')
print("...")
# Check the score of the SVC
svc_score = round(svc.score(X_test, y_test), 4)
print("Test Accuracy of SVM =", svc_score)
print("...")
# Check the prediction time for a single sample
n_predict = 10
t = time.time()
svc_predict = svc.predict(X_test[0:n_predict])
print("For these TRUE Labels: ", y_test[0:n_predict])
print("The SVM Classifier prediction result: ", svc_predict)
t2 = time.time()
print(round(t2 - t, 6), "seconds to predict", n_predict, "labels with the SVM Classifier.")
# Define a single function that can extract features using hog sub-sampling and make predictions
def find_cars(image, ystart, ystop, scale, color_space, hog_channel, svc, X_scaler, orient,
pix_per_cell, cell_per_block, spatial_size, hist_bins, show_all_rectangles=False):
# arrays of rectangles where cars were detected
rectangles = []
image = image.astype(np.float32) / 255
image_tosearch = image[ystart:ystop, :, :]
# Apply color conversion if other than 'RGB'
if color_space != 'RGB':
if color_space == 'HSV':
color_transform_tosearch = cv2.cvtColor(image_tosearch, cv2.COLOR_RGB2HSV)
elif color_space == 'LUV':
color_transform_tosearch = cv2.cvtColor(image_tosearch, cv2.COLOR_RGB2LUV)
elif color_space == 'HLS':
color_transform_tosearch = cv2.cvtColor(image_tosearch, cv2.COLOR_RGB2HLS)
elif color_space == 'YUV':
color_transform_tosearch = cv2.cvtColor(image_tosearch, cv2.COLOR_RGB2YUV)
elif color_space == 'YCrCb':
color_transform_tosearch = cv2.cvtColor(image_tosearch, cv2.COLOR_RGB2YCrCb)
else:
color_transform_tosearch = np.copy(image)
# Rescale image if other than 1.0 scale
if scale != 1:
image_shape = color_transform_tosearch.shape
color_transform_tosearch = cv2.resize(color_transform_tosearch, (np.int(image_shape[1] / scale), np.int(image_shape[0] / scale)))
# Select color space channel for HOG
if hog_channel == 'ALL':
ch1 = color_transform_tosearch[:, :, 0]
ch2 = color_transform_tosearch[:, :, 1]
ch3 = color_transform_tosearch[:, :, 2]
else:
ch1 = color_transform_tosearch[:, :, hog_channel]
# Define blocks and steps as above
nxblocks = (ch1.shape[1] // pix_per_cell) + 1
nyblocks = (ch1.shape[0] // pix_per_cell) + 1
nfeat_per_block = orient * cell_per_block ** 2
# 64 was the original sampling rate, with 8 cells and 8 pix per cell
window = 64
nblocks_per_window = (window // pix_per_cell) - 1
cells_per_step = 2 # Instead of overlap, define how many cells to step
nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
nysteps = (nyblocks - nblocks_per_window) // cells_per_step
# Compute individual channel HOG features for the entire image
if hog_channel == 'ALL':
hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False)
else:
hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False)
for xb in range(nxsteps):
for yb in range(nysteps):
ypos = yb * cells_per_step
xpos = xb * cells_per_step
# Extract HOG fot this patch
if hog_channel == 'ALL':
hog_feat1 = hog1[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
hog_feat2 = hog2[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
hog_feat3 = hog3[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))
else:
hog_feat1 = hog1[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
hog_features = hog_feat1
xleft = xpos * pix_per_cell
ytop = ypos * pix_per_cell
############# IN CASE OF USING OTHER FEATURE EXTRACTION ###########
# # Extract the image patch
# subimg = cv2.resize(color_transform_tosearch[ytop:ytop+window , xleft:xleft+window], (64,64))
# # Get color features
# spatial_features = bin_spatial(subimg, size=spatial_size)
# hist_features = color_hist(subimg, nbins=hist_bins)
# # Scale features and make a prediction
# test_features = X_scaler.transform(np.hstack((spatial_features, hist_features, hog_features)).reshape(1,-1))
# test_features = X_scaler.transform(np.hstack((shape_feat, hist_feat)).reshape(1,-1))
# test_prediction = svc.predict(test_features)
##############################################################
test_prediction = svc.predict(hog_features.reshape(1, -1)) # only use hog feature
if test_prediction == 1 or show_all_rectangles:
xbox_left = np.int(xleft * scale)
ytop_draw = np.int(ytop * scale)
win_draw = np.int(window * scale)
rectangles.append(
((xbox_left, ytop_draw + ystart), (xbox_left + win_draw, ytop_draw + win_draw + ystart)))
return rectangles
print("...")
test_image = mpimg.imread('./test_images/test1.jpg')
ystart = 400
ystop = 656
scale = 2
color_space = 'YUV' # Can be RGB, HSV, LUV, HLS, YUV, YCrCb
orient = 11
pix_per_cell = 16
cell_per_block = 2
hog_channel = 'ALL' # Can be 0, 1, 2, or 'ALL'
rectangles = find_cars(test_image, ystart, ystop, scale, color_space, hog_channel, svc, None, orient, pix_per_cell, cell_per_block, None, None)
print(len(rectangles), 'rectangles found in image')
# Here is your draw_boxes function from the previous exercise
def draw_boxes(image, bboxes, color=(0, 0, 255), thick=6):
# Make a copy of the image
imcopy = np.copy(image)
random_color = False
# Iterate through the bounding boxes
for bbox in bboxes:
# for random color bboxes, select the color
if color == 'random' or random_color:
color = (np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255))
random_color = True
# Draw a rectangle given bbox coordinates
cv2.rectangle(imcopy, bbox[0], bbox[1], color, thick)
# Return the image copy with boxes drawn
return imcopy
print("...")
test_image_rects = draw_boxes(test_image, rectangles)
plt.figure(figsize=(10,10))
plt.imshow(test_image_rects)
print("...")