-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.R
565 lines (385 loc) · 12.1 KB
/
model.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# This model depends upon the following external stats (Be sure to get latest available):
# Lending club statistics: lendingclub.com
# Zip code statistics: https://www.irs.gov/uac/soi-tax-stats-individual-income-tax-statistics-zip-code-stats-soi
# Load required libraries
library('parallel')
library('plyr')
library('dplyr')
library('lubridate')
library('stringr')
library('caret')
library('xgboost')
library('NMOF')
library('snow')
library('quantmod')
library('InformationValue')
library('data.table')
# No scientific
options("scipen"=10, "digits"=10)
# Seed for model comparisons
set.seed(1)
# Function to set relative home directory (requires latest Rstudio)
defaultDir = '/home/user/cpls'
csf <- function() {
cmdArgs = commandArgs(trailingOnly = FALSE)
needle = "--file="
match = grep(needle, cmdArgs)
if (length(match) > 0) {
# Rscript via command line
return(normalizePath(sub(needle, "", cmdArgs[match])))
} else {
ls_vars = ls(sys.frames()[[1]])
if ("fileName" %in% ls_vars) {
# Source'd via RStudio
return(normalizePath(sys.frames()[[1]]$fileName))
} else {
if (!is.null(sys.frames()[[1]]$ofile)) {
# Source'd via R console
return(normalizePath(sys.frames()[[1]]$ofile))
} else {
# RStudio Run Selection
return(normalizePath(rstudioapi::getActiveDocumentContext()$path))
}
}
}
}
dir <- tryCatch(dirname(csf()),
error = function(e) {
defaultDir
}
)
if (is.null(dir) | length(dir) == 0) {
dir <- defaultDir
}
if(!dir.exists(dir)) {
err('Unable to determine home directory')
} else {
setwd(dir)
}
# Load LC stats data
load('data/stats.rda')
# Model only charged off or fully paid notes
stats=stats[loan_status=='Fully Paid' | loan_status=='Charged Off'][order(id)]
# Record label and id
id <- stats$id
label <- stats$label
# Select available model fields
featureNames <- c("loanAmount",
"empLength",
"homeOwnership",
"annualInc",
"isIncV",
"purpose",
"addrState",
"dti",
"delinq2Yrs",
"ficoRangeLow",
"inqLast6Mths",
"mthsSinceLastDelinq",
"mthsSinceLastRecord",
"openAcc",
"pubRec",
"revolBal",
"revolUtil",
"totalAcc",
"initialListStatus",
"collections12MthsExMed",
"mthsSinceLastMajorDerog",
"applicationType",
"annualIncJoint",
"dtiJoint",
"isIncVJoint",
"accNowDelinq",
"totCollAmt",
"totCurBal",
"openAcc6m",
"openIl6m",
"openIl12m",
"openIl24m",
"mthsSinceRcntIl",
"totalBalIl",
"iLUtil",
"openRv12m",
"openRv24m",
"maxBalBc",
"allUtil",
"totalRevHiLim",
"inqFi",
"totalCuTl",
"inqLast12m",
"accOpenPast24Mths",
"avgCurBal",
"bcOpenToBuy",
"bcUtil",
"chargeoffWithin12Mths",
"delinqAmnt",
"moSinOldIlAcct",
"moSinOldRevTlOp",
"moSinRcntRevTlOp",
"moSinRcntTl",
"mortAcc",
"mthsSinceRecentBc",
"mthsSinceRecentBcDlq",
"mthsSinceRecentInq",
"mthsSinceRecentRevolDelinq",
"numAcctsEver120Ppd",
"numActvBcTl",
"numActvRevTl",
"numBcSats",
"numBcTl",
"numIlTl",
"numOpRevTl",
"numRevAccts",
"numRevTlBalGt0",
"numSats",
"numTl120dpd2m",
"numTl30dpd",
"numTl90gDpd24m",
"numTlOpPast12m",
"pctTlNvrDlq",
"percentBcGt75",
"pubRecBankruptcies",
"taxLiens",
"totHiCredLim",
"totalBalExMort",
"totalBcLimit",
"totalIlHighCreditLimit",
"earliestCrLineMonths",
"amountTerm",
"amountTermIncomeRatio",
"revolBalAnnualIncRatio",
"population",
"avgWage")
stats <- data.frame(stats[,featureNames,with=FALSE])
# Remove predictors with more than x% NAa
stats = stats[,!colSums(is.na(stats)) > nrow(stats)*.17]
# # Remove near zero variance predictors
# nzv <- nearZeroVar(stats)
# stats <- stats[,-nzv]
# Predictors
featureNames <- names(stats)
# Create empty data frame to record class and structure of predictors
featureDF=subset(as.data.frame(head(stats,1)),select=featureNames)
# Convert to numeric (xgboost requires numeric)
dmy <- dummyVars(" ~ .", data = stats)
stats <- data.frame(predict(dmy, newdata = stats))
# Add back label
stats$label <- label
# Create stratified train and test partition
inTrain <- createDataPartition(stats$label,p=0.75, list=FALSE)
train <- stats[inTrain,]
test <- stats[-inTrain,]
# train = train[0:500,]
# Create outcome vector for xgboost and remove from training set
trainLabel <- train$label
train$label <- NULL
# xgboost task parameters
nrounds <- 3000
folds <- 5
obj <- 'binary:logistic'
eval <- 'logloss'
# Parameter grid to search
params <- list(
eval_metric = eval,
objective = obj,
# eta = c(1, 0.01, 0.1, 0.01),
eta = 0.1,
# max_depth = c(4, 6, 8, 10, 12),
max_depth = 4,
# max_delta_step = c(0, 1),
max_delta_step = 1,
# colsample_bytree = c(0.5, 0.7),
colsample_bytree = .7,
# gamma = c(0, 0.5, 0.7, 1)
gamma = .7
)
# Table to track performance from each worker node
res <- data.frame()
# Simple cross validated xgboost training function (returning minimum error for grid search)
xgbCV <- function (params) {
fit <- xgb.cv(
data = data.matrix(train),
label = trainLabel,
param =params,
missing = NA,
nfold = folds,
prediction = FALSE,
early.stop.round = 5,
maximize = FALSE,
nrounds = nrounds
)
rounds <- nrow(fit)
metric = paste('test.',eval,'.mean',sep='')
idx <- which.min(fit[,fit[[metric]]])
val <- fit[idx,][[metric]]
res <<- rbind(res,c(idx,val,rounds))
colnames(res) <<- c('idx','val','rounds')
return(val)
}
# Find minimal testing error in parallel
cl <- makeCluster(round(detectCores()/2))
clusterExport(cl, c("xgb.cv",'train','trainLabel','nrounds','res','eval','folds'))
sol <- gridSearch(
fun = xgbCV,
levels = params,
method = 'snow',
cl = cl,
keepNames = TRUE,
asList = TRUE
)
# Combine all model results
comb=clusterEvalQ(cl,res)
stopCluster(cl)
results <- ldply(comb,data.frame)
df <- suppressWarnings(data.frame(Reduce(rbind, sol$levels)))
df <- cbind(val=sol$values,df)
results <- arrange(merge(results,df,by='val'),val)
# Train model with appropriate parameters
params <- c(sol$minlevels,objective = obj, eval_metric = eval)
xgbModel <- xgboost(
data = xgb.DMatrix(data.matrix(train),missing=NaN, label = trainLabel),
param = params,
nrounds = head(results$idx,1)
)
# Show cv model results
print(results)
# Quick plot of AUC
actual <- test$label
test$label <- NULL
pred <- predict(xgbModel, data.matrix(test), missing=NA)
AUROC(actual, pred)
actual <- trainLabel
pred <- predict(xgbModel, data.matrix(train), missing=NA)
AUROC(actual, pred)
# Save model and train/test data
save(xgbModel,results,params,inTrain,featureNames,featureDF,dmy, file='data/model.rda')
# Create sets data frame to record which loans were in train and test set
sets = as.data.frame(id)
trainIdx <- as.vector(inTrain)
sets$set <- 'test'
sets[trainIdx,]$set <- 'train'
sets$set <- as.factor(sets$set)
names(sets)<-c('id','set')
# trainIdx <- as.vector(inTrain)
# testIdx <- as.vector(-inTrain)
# stats$set <- 'test'
# stats[trainIdx,]$set <- 'train'
# stats$set <- as.factor(stats$set)
# sets <- stats[,c('id','set')]
# Add set label to stats data frame
load('data/stats.rda')
stats <- merge(x = stats, y = sets, by = "id", all.x=TRUE)
# Model stats data
stats$model <- predict(xgbModel, data.matrix(predict(dmy, newdata=stats[,featureNames, with=FALSE])), missing=NA)
# Save stats
save(stats, file='data/stats.rda')
stop()
### Add ROI data ###
# Get duration of each note
# End of Loan for fully paid is last_pymnt_d
# End of Loan for charged off is last_pymnt_d + 5 months
# End of Loan for active loans is current day (current age)
stats$eolDays <- ifelse(stats$loan_status == 'Fully Paid',
as.numeric(difftime(stats$last_pymnt_d,stats$issue_d,units="days")),
ifelse(stats$loan_status == 'Charged Off',
ifelse(is.na(stats$last_pymnt_d),
150,
as.numeric(difftime(stats$last_pymnt_d + months(5),stats$issue_d,units="days"))),
as.numeric(difftime(now(),stats$issue_d,units="days"))
))
stats$eolMths=round(stats$eolDays/30)
stats$eolMths <- ifelse(stats$eolMths==0,1,stats$eolMths)
# Age of loan based on current day for all loans
stats$ageDays=as.numeric(difftime(now(),stats$issue_d,units="days"))
stats$ageMths=round(stats$ageDays/30)
# Obtain remaining principal
stats$remPrncp=stats$fundedAmount-stats$total_rec_prncp
# Obtain total interest paid by borrower
stats$total_int=stats$remPrncp + stats$total_pymnt - stats$fundedAmount
# Obtain fees from LC
stats$fees= stats$total_pymnt * .01
# Remove loans that have payments but no interest earned
stats=stats[!stats$total_int==0 & stats$total_pymnt>0,]
# Effective Principal by investor (not borrower) to obtain the total received interest
# P=I/r for a simple interest loan
# Based on the interest received and rate of loan, you can obtain the amount of principal paid
# to obtain the interest received. Cannot use all of the origination principal because all of the
# interest may not have been paid
stats$prnPaid <- stats$total_int/(stats$intRate/100)
# other Income
stats$otherIncome = stats$recoveries + stats$collection_recovery_fee
# Set loss to remaining principal * loss factor
stats$loss=round(ifelse ( stats$loan_status == 'Charged Off', stats$remPrncp,
ifelse ( stats$loan_status == 'Default', stats$remPrncp * .98,
ifelse ( stats$loan_status == 'Late (31-120 days)', stats$remPrncp * .82,
ifelse ( stats$loan_status == 'Late (16-30 days)', stats$remPrncp * .59,
ifelse ( stats$loan_status == 'In Grace Period', stats$remPrncp * .27, stats$remPrncp * 0))))),2)
# ROI
stats$ROI <- ( stats$total_int + stats$otherIncome -stats$fees - stats$loss ) / ( stats$prnPaid + stats$loss ) * 100
# Don't annualize loans less than year and complete
stats$ROI <- ifelse(stats$eolMths<12 & (stats$loan_status=='Fully Paid' | stats$loan_status=='Charged Off'),
round(( stats$total_int + stats$otherIncome + stats$total_rec_prncp - stats$fundedAmount - stats$loss ) / ( stats$fundedAmount + stats$loss)*100,2),
stats$ROI)
stats$ROI <- round(stats$ROI - 1,2)
stats$ROI <- ifelse(stats$ROI <= -100, -100,stats$ROI)
summary(stats$ROI)
# Projected ROI
stats$projROI = round(ifelse(stats$loan_status == 'Current' | stats$loan_status == 'Issued',
stats$model * (stats$intRate - 1),
stats$ROI),2)
# End
stop()
# Feature selection logic
# Used after model trained to determine non important fields
df <- as.data.frame(importance_matrix)
df <- df[df$Gain>=.001,]
features <- df$Feature
#----------------------------------------- model performance testing
# Load model
load('data/model.rda')
load('data/modelStats.rda')
# Use same data sets
train <- stats[inTrain,]
test <- stats[-inTrain,]
# Get important features and plot
names = dimnames(data.matrix(train))[[2]]
importance_matrix = xgb.importance(names, model=xgbModel)
gp = xgb.plot.importance(importance_matrix)
print(gp)
# Get optimal threshold
opt <- optimalCutoff(actuals, predictedScores, optimiseFor = "Both", returnDiagnostics = F)
# Compute and plot AuC
actuals <- test$label
predictedScores <- predict(xgbModel, data.matrix(test), missing=NA)
AUROC(actuals, predictedScores)
kappaCohen(actuals, predictedScores, threshold = 0.5)
ks_plot(actuals, predictedScores)
ks_stat(actuals, predictedScores, returnKSTable = F)
plotROC(actuals=test$label,predictedScores=pred)
postResample(pred,actual)
library(Metrics)
rmse(actual,pred)
mae(actual,pred)
plotROC(actuals=test$label,predictedScores=pred)
#### Classification
library('ROCR')
actual <- ifelse(test$percPaid<1,0,1)
opt <- optim.thresh(actual,pred)$'sensitivity=specificity'
predObj <- prediction(pred,actual)
perfObj = performance(predObj, measure = 'tpr', x.measure = 'fpr')
plot(perfObj)
opt.cut = function(perf, pred){
cut.ind = mapply(FUN=function(x, y, p){
d = (x - 0)^2 + (y-1)^2
ind = which(d == min(d))
c(sensitivity = y[[ind]], specificity = 1-x[[ind]],
cutoff = p[[ind]])
}, [email protected], [email protected], pred@cutoffs)
}
print(opt.cut(perfObj, predObj))
perfObj = performance(predObj, 'cost', cost.fp = 3, cost.fn = 1)
predObj@cutoffs[[1]][which.min([email protected][[1]])]
pred <- ifelse(pred>opt,1,0)
confusionMatrix(pred,actual)
postResample(pred,actual)
sensitivity(pred,actual)