-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathcdflib.html
630 lines (593 loc) · 18.7 KB
/
cdflib.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
<html>
<head>
<title>
CDFLIB - Cumulative Density Functions
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
CDFLIB <br> Cumulative Density Functions
</h1>
<hr>
<p>
<b>CDFLIB</b>
is a C++ library which
evaluates cumulative probability density functions.
</p>
<p>
<b>CDFLIB</b> includes routines for
evaluating the cumulative density functions of a variety of standard
probability distributions. An unusual feature of this library is
its ability to easily compute any one parameter of the CDF given
the others. This means that a single routine can evaluate the
CDF given the usual parameters, or determine the value of a parameter
that produced a given CDF value.
</p>
<p>
The probability distributions covered include:
<ul>
<li>
the Beta distribution;
</li>
<li>
the binomial distribution;
</li>
<li>
the chi-square distribution;
</li>
<li>
the noncentral chi-square distribution;
</li>
<li>
the F distribution;
</li>
<li>
the noncentral F distribution;
</li>
<li>
the Gamma distribution;
</li>
<li>
the negative binomial distribution;
</li>
<li>
the normal distribution;
</li>
<li>
the Poisson distribution;
</li>
<li>
the T distribution;
</li>
</ul>
</p>
<p>
Note that the F and noncentral F distributions are not necessarily
monotone in either degree of freedom argument. Consequently, there
may be two degree of freedom arguments that satisfy the specified
condition. An arbitrary one of these will be found by the routines.
</p>
<p>
The amount of computation required for the noncentral chisquare and
noncentral F distribution is proportional to the value of the
noncentrality parameter. Very large values of this parameter can
require immense numbers of computation. Consequently, when the
noncentrality parameter is to be calculated, the upper limit searched
is 10,000.
</p>
<p>
<a href = "http://www.netlib.org/random">
http://www.netlib.org/random</a> <br>
the NETLIB random number web site, distributes
a TAR file of the source code for the original CDFLIB library
in C and FORTRAN;
</p>
<p>
<a href = "http://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.aspx?Software_Id=21">
http://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.aspx?Software_Id=21</a>
is a site at the University of Texas Department of Biostatistics
and Applied Mathematics which makes available a more up-to-date FORTRAN90
version of the software, known as <b>CDFLIB90</b>.
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>CDFLIB</b> is available in
<a href = "../../c_src/cdflib/cdflib.html">a C version</a> and
<a href = "../../cpp_src/cdflib/cdflib.html">a C++ version</a> and
<a href = "../../f_src/cdflib/cdflib.html">a FORTRAN90 version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/asa310/asa310.html">
ASA310</a>,
a C++ library which
computes the CDF of the noncentral Beta distribution.
</p>
<p>
<a href = "../../cpp_src/beta_nc/beta_nc.html">
BETA_NC</a>,
a C++ library which
evaluates the CDF of the noncentral Beta distribution.
</p>
<p>
<a href = "../../cpp_src/gsl/gsl.html">
GSL</a>,
a C++ library which
contains routines for evaluating, sampling and inverting various
probability distributions.
</p>
<p>
<a href = "../../cpp_src/normal/normal.html">
NORMAL</a>,
a C++ library which
contains routines for
sampling the normal distribution.
</p>
<p>
<a href = "../../cpp_src/prob/prob.html">
PROB</a>,
a C++ library which
contains routines for
evaluating and inverting the normal CDF, and many other
distributions.
</p>
<p>
<a href = "../../cpp_src/test_values/test_values.html">
TEST_VALUES</a>,
a C++ library which
contains routines that store selected values of the normal CDF, and
many other statistical distributions.
</p>
<p>
<a href = "../../cpp_src/uniform/uniform.html">
UNIFORM</a>,
a C++ library which
contains routines for sampling the uniform distribution.
</p>
<h3 align = "center">
Author:
</h3>
<p>
Barry Brown, James Lovato, Kathy Russell,<br>
Department of Biomathematics,<br>
University of Texas,<br>
Houston, Texas.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Milton Abramowitz, Irene Stegun,<br>
Handbook of Mathematical Functions,<br>
National Bureau of Standards, 1964,<br>
ISBN: 0-486-61272-4,<br>
LC: QA47.A34.
</li>
<li>
Jacobus Bus, Jacob Dekker,<br>
Two Efficient Algorithms with Guaranteed Convergence for
Finding a Zero of a Function,<br>
ACM Transactions on Mathematical Software,<br>
Volume 1, Number 4, December 1975, pages 330-345.
</li>
<li>
William Cody,<br>
Algorithm 715:
SPECFUN - A Portable FORTRAN Package of
Special Function Routines and Test Drivers,<br>
ACM Transactions on Mathematical Software,<br>
Volume 19, Number 1, March 1993, pages 22-32.
</li>
<li>
William Cody,<br>
Rational Chebyshev Approximations for the Error Function,<br>
Mathematics of Computation,<br>
Volume 23, Number 107, July 1969, pages 631-638.
</li>
<li>
William Cody, Anthony Strecok, Henry Thacher,<br>
Chebyshev Approximations for the Psi Function,<br>
Mathematics of Computation,<br>
Volume 27, Number 121, January 1973, pages 123-127.
</li>
<li>
Armido DiDinato, Alfred Morris,<br>
Algorithm 708:
Significant Digit Computation of the
Incomplete Beta Function Ratios,<br>
ACM Transactions on Mathematical Software,<br>
Volume 18, Number 3, September 1993, pages 360-373.
</li>
<li>
Armido DiDinato, Alfred Morris,<br>
Computation of the Incomplete Gamma Function Ratios and
their Inverse,<br>
ACM Transactions on Mathematical Software,<br>
Volume 12, Number 4, December 1986, pages 377-393.
</li>
<li>
Phyllis Fox, Andrew Hall, Norman Schryer,<br>
Algorithm 528:
Framework for a Portable Library,<br>
ACM Transactions on Mathematical Software,<br>
Volume 4, Number 2, June 1978, page 176-188.
</li>
<li>
William Kennedy, James Gentle,<br>
Statistical Computing,<br>
Marcel Dekker, 1980,<br>
ISBN: 0824768981,<br>
LC: QA276.4 K46.
</li>
<li>
Karl Pearson,<br>
Tables of the Incomplete Beta Function,<br>
Cambridge University Press, 1968,<br>
ISBN: 0521059224,<br>
LC: QA351.P38.
</li>
<li>
Frank Powell,<br>
Statistical Tables for Sociology, Biology and Physical Sciences,<br>
Cambridge University Press, 1982,<br>
ISBN: 0521284732,<br>
LC: QA276.25.S73.
</li>
<li>
Stephen Wolfram,<br>
The Mathematica Book,<br>
Fourth Edition,<br>
Cambridge University Press, 1999,<br>
ISBN: 0-521-64314-7,<br>
LC: QA76.95.W65.
</li>
<li>
Daniel Zwillinger, editor,<br>
CRC Standard Mathematical Tables and Formulae,<br>
30th Edition,<br>
CRC Press, 1996,<br>
ISBN: 0-8493-2479-3.
</li>
<li>
<a href = "http://www.netlib.org/random">
http://www.netlib.org/random</a>,
the web site.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "cdflib.cpp">cdflib.cpp</a>, the source code;
</li>
<li>
<a href = "cdflib.hpp">cdflib.hpp</a>, the include file;
</li>
<li>
<a href = "cdflib.sh">cdflib.sh</a>,
commands to compile the source code;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "cdflib_prb.cpp">cdflib_prb.cpp</a>,
a sample calling program;
</li>
<li>
<a href = "cdflib_prb.sh">cdflib_prb.sh</a>,
commands to compile, link and run the sample program;
</li>
<li>
<a href = "cdflib_prb_output.txt">cdflib_prb_output.txt</a>,
output from a run of the sample program;
</li>
</UL>
</P>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>ALGDIV</b> computes ln ( Gamma ( B ) / Gamma ( A + B ) ) when 8 <= B.
</li>
<li>
<b>ALNREL</b> evaluates the function ln ( 1 + A ).
</li>
<li>
<b>APSER</b> computes the incomplete beta ratio I(SUB(1-X))(B,A).
</li>
<li>
<b>BCORR</b> evaluates DEL(A0) + DEL(B0) - DEL(A0 + B0).
</li>
<li>
<b>BETA</b> evaluates the beta function.
</li>
<li>
<b>BETA_ASYM</b> computes an asymptotic expansion for IX(A,B), for large A and B.
</li>
<li>
<b>BETA_FRAC</b> evaluates a continued fraction expansion for IX(A,B).
</li>
<li>
<b>BETA_GRAT</b> evaluates an asymptotic expansion for IX(A,B).
</li>
<li>
<b>BETA_INC</b> evaluates the incomplete beta function IX(A,B).
</li>
<li>
<b>BETA_INC_VALUES</b> returns some values of the incomplete Beta function.
</li>
<li>
<b>BETA_LOG</b> evaluates the logarithm of the beta function.
</li>
<li>
<b>BETA_PSER</b> uses a power series expansion to evaluate IX(A,B)(X).
</li>
<li>
<b>BETA_RCOMP</b> evaluates X**A * Y**B / Beta(A,B).
</li>
<li>
<b>BETA_RCOMP1</b> evaluates exp(MU) * X**A * Y**B / Beta(A,B).
</li>
<li>
<b>BETA_UP</b> evaluates IX(A,B) - IX(A+N,B) where N is a positive integer.
</li>
<li>
<b>BINOMIAL_CDF_VALUES</b> returns some values of the binomial CDF.
</li>
<li>
<b>CDFBET</b> evaluates the CDF of the Beta Distribution.
</li>
<li>
<b>CDFBIN</b> evaluates the CDF of the Binomial distribution.
</li>
<li>
<b>CDFCHI</b> evaluates the CDF of the chi square distribution.
</li>
<li>
<b>CDFCHN</b> evaluates the CDF of the Noncentral Chi-Square.
</li>
<li>
<b>CDFF</b> evaluates the CDF of the F distribution.
</li>
<li>
<b>CDFFNC</b> evaluates the CDF of the Noncentral F distribution.
</li>
<li>
<b>CDFGAM</b> evaluates the CDF of the Gamma Distribution.
</li>
<li>
<b>CDFNBN</b> evaluates the CDF of the Negative Binomial distribution
</li>
<li>
<b>CDFNOR</b> evaluates the CDF of the Normal distribution.
</li>
<li>
<b>CDFPOI</b> evaluates the CDF of the Poisson distribution.
</li>
<li>
<b>CDFT</b> evaluates the CDF of the T distribution.
</li>
<li>
<b>CHI_NONCENTRAL_CDF_VALUES</b> returns values of the noncentral chi CDF.
</li>
<li>
<b>CHI_SQUARE_CDF_VALUES</b> returns some values of the Chi-Square CDF.
</li>
<li>
<b>CUMBET</b> evaluates the cumulative incomplete beta distribution.
</li>
<li>
<b>CUMBIN</b> evaluates the cumulative binomial distribution.
</li>
<li>
<b>CUMCHI</b> evaluates the cumulative chi-square distribution.
</li>
<li>
<b>CUMCHN</b> evaluates the cumulative noncentral chi-square distribution.
</li>
<li>
<b>CUMF</b> evaluates the cumulative F distribution.
</li>
<li>
<b>CUMFNC</b> evaluates the cumulative noncentral F distribution.
</li>
<li>
<b>CUMGAM</b> evaluates the cumulative incomplete gamma distribution.
</li>
<li>
<b>CUMNBN</b> evaluates the cumulative negative binomial distribution.
</li>
<li>
<b>CUMNOR</b> computes the cumulative normal distribution.
</li>
<li>
<b>CUMPOI</b> evaluates the cumulative Poisson distribution.
</li>
<li>
<b>CUMT</b> evaluates the cumulative T distribution.
</li>
<li>
<b>DBETRM</b> computes the Sterling remainder for the complete beta function.
</li>
<li>
<b>DEXPM1</b> evaluates the function EXP(X) - 1.
</li>
<li>
<b>DINVNR</b> computes the inverse of the normal distribution.
</li>
<li>
<b>DINVR</b> bounds the zero of the function and invokes DZROR.
</li>
<li>
<b>DLANOR</b> evaluates the logarithm of the asymptotic Normal CDF.
</li>
<li>
<b>DPMPAR</b> provides machine constants for double precision arithmetic.
</li>
<li>
<b>DSTINV</b> seeks a value X such that F(X) = Y.
</li>
<li>
<b>DSTREM</b> computes the Sterling remainder ln ( Gamma ( Z ) ) - Sterling ( Z ).
</li>
<li>
<b>DSTXR</b> sets quantities needed by the zero finder.
</li>
<li>
<b>DT1</b> computes an approximate inverse of the cumulative T distribution.
</li>
<li>
<b>DZROR</b> seeks the zero of a function using reverse communication.
</li>
<li>
<b>E0000</b> is a reverse-communication zero bounder.
</li>
<li>
<b>E00001</b> is a reverse-communication zero finder.
</li>
<li>
<b>ERF_VALUES</b> returns some values of the ERF or "error" function.
</li>
<li>
<b>ERROR_F</b> evaluates the error function ERF.
</li>
<li>
<b>ERROR_FC</b> evaluates the complementary error function ERFC.
</li>
<li>
<b>ESUM</b> evaluates exp ( MU + X ).
</li>
<li>
<b>EVAL_POL</b> evaluates a polynomial at X.
</li>
<li>
<b>EXPARG</b> returns the largest or smallest legal argument for EXP.
</li>
<li>
<b>F_CDF_VALUES</b> returns some values of the F CDF test function.
</li>
<li>
<b>F_NONCENTRAL_CDF_VALUES</b> returns some values of the F CDF test function.
</li>
<li>
<b>FIFDINT</b> truncates a double number to an integer.
</li>
<li>
<b>FIFDMAX1</b> returns the maximum of two numbers a and b
</li>
<li>
<b>FIFDMIN1</b> returns the minimum of two numbers.
</li>
<li>
<b>FIFDSIGN</b> transfers the sign of the variable "sign" to the variable "mag"
</li>
<li>
<b>FIFIDINT</b> truncates a double number to a long integer
</li>
<li>
<b>FIFMOD</b> returns the modulo of a and b
</li>
<li>
<b>FPSER</b> evaluates IX(A,B)(X) for very small B.
</li>
<li>
<b>FTNSTOP</b> prints a message to standard error and then exits.
</li>
<li>
<b>GAM1</b> computes 1 / GAMMA(A+1) - 1 for -0.5D+00 <= A <= 1.5
</li>
<li>
<b>GAMMA_INC</b> evaluates the incomplete gamma ratio functions P(A,X) and Q(A,X).
</li>
<li>
<b>GAMMA_INC_INV</b> computes the inverse incomplete gamma ratio function.
</li>
<li>
<b>GAMMA_INC_VALUES</b> returns some values of the incomplete Gamma function.
</li>
<li>
<b>GAMMA_LN1</b> evaluates ln ( Gamma ( 1 + A ) ), for -0.2 <= A <= 1.25.
</li>
<li>
<b>GAMMA_LOG</b> evaluates ln ( Gamma ( A ) ) for positive A.
</li>
<li>
<b>GAMMA_RAT1</b> evaluates the incomplete gamma ratio functions P(A,X) and Q(A,X).
</li>
<li>
<b>GAMMA_VALUES</b> returns some values of the Gamma function.
</li>
<li>
<b>GAMMA_X</b> evaluates the gamma function.
</li>
<li>
<b>GSUMLN</b> evaluates the function ln(Gamma(A + B)).
</li>
<li>
<b>IPMPAR</b> returns integer machine constants.
</li>
<li>
<b>NEGATIVE_BINOMIAL_CDF_VALUES</b> returns values of the negative binomial CDF.
</li>
<li>
<b>NORMAL_CDF_VALUES</b> returns some values of the Normal CDF.
</li>
<li>
<b>POISSON_CDF_VALUES</b> returns some values of the Poisson CDF.
</li>
<li>
<b>PSI</b> evaluates the psi or digamma function, d/dx ln(gamma(x)).
</li>
<li>
<b>PSI_VALUES</b> returns some values of the Psi or Digamma function.
</li>
<li>
<b>RCOMP</b> evaluates exp(-X) * X**A / Gamma(A).
</li>
<li>
<b>REXP</b> evaluates the function EXP(X) - 1.
</li>
<li>
<b>RLOG</b> computes X - 1 - LN(X).
</li>
<li>
<b>RLOG1</b> evaluates the function X - ln ( 1 + X ).
</li>
<li>
<b>STUDENT_CDF_VALUES</b> returns some values of the Student CDF.
</li>
<li>
<b>STVALN</b> provides starting values for the inverse of the normal distribution.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 17 November 2006.
</i>
<!-- John Burkardt -->
</body>
</html>