-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathlebesgue.html
264 lines (233 loc) · 6.79 KB
/
lebesgue.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
<html>
<head>
<title>
LEBESGUE - Estimate the Lebesgue Constant
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
LEBESGUE <br> Estimate the Lebesgue Constant
</h1>
<hr>
<p>
<b>LEBESGUE</b>
is a C++ library which
is given a set of nodes in 1D, and
plots the Lebesgue function, and estimates the Lebesgue constant,
which measures the maximum magnitude of the potential error
of Lagrange polynomial interpolation, and which uses gnuplot to
make plots of the Lebesgue function.
</p>
<p>
Any set of nodes in the real line X(I), for 1 <= I <= N, defines
a corresponding set of Lagrange basis functions:
<pre>
L(I)(X) = product ( 1 <= J <= N, J /= I ) ( X - X(J) )
/ product ( 1 <= J <= N, J /= I ) ( X(I) - X(J) )
</pre>
with the property that
<pre>
L(I)(X(J)) = 0 if I /= J
1 if I = J
</pre>
</p>
<p>
The Lebesgue function is formed by the sum of the absolute values of
these Lagrange basis functions:
<pre>
LF(X) = sum ( 1 <= I <= N ) | L(I)(X) |
</pre>
and the Lebesgue constant LC is the maximum value of LF(X) over the
interpolation interval, which is typically X(1) to X(N), or
min ( X(*) ), max ( X(*) ), or [-1,+1], or some user-defined interval.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>LEBESGUE</b> is available in
<a href = "../../c_src/lebesgue/lebesgue.html">a C version</a> and
<a href = "../../cpp_src/lebesgue/lebesgue.html">a C++ version</a> and
<a href = "../../f77_src/lebesgue/lebesgue.html">a FORTRAN77 version</a> and
<a href = "../../f_src/lebesgue/lebesgue.html">a FORTRAN90 version</a> and
<a href = "../../m_src/lebesgue/lebesgue.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/gnuplot/gnuplot.html">
GNUPLOT</a>,
C++ programs which
illustrate how a program can write data and command files
so that gnuplot can create plots of the program results.
</p>
<p>
<a href = "../../cpp_src/interp/interp.html">
INTERP</a>,
a C++ library which
can be used for parameterizing and interpolating data;
</p>
<p>
<a href = "../../cpp_src/quadrule/quadrule.html">
QUADRULE</a>,
a C++ library which
defines quadrature rules for approximating an integral over a 1D domain.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Jean-Paul Berrut, Lloyd Trefethen,<br>
Barycentric Lagrange Interpolation,<br>
SIAM Review,<br>
Volume 46, Number 3, September 2004, pages 501-517.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "lebesgue.cpp">lebesgue.cpp</a>, the source code.
</li>
<li>
<a href = "lebesgue.hpp">lebesgue.hpp</a>, the source code.
</li>
<li>
<a href = "lebesgue.sh">lebesgue.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "lebesgue_prb.cpp">lebesgue_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "lebesgue_prb.sh">lebesgue_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "lebesgue_prb_output.txt">lebesgue_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
The test programs create plots of the Lebesgue function for
specific sizes of the point sets.
<ul>
<li>
<a href = "chebyshev1.png">chebyshev1.png</a>
</li>
<li>
<a href = "chebyshev2.png">chebyshev2.png</a>
</li>
<li>
<a href = "chebyshev3.png">chebyshev3.png</a>
</li>
<li>
<a href = "chebyshev4.png">chebyshev4.png</a>
</li>
<li>
<a href = "equidistant1.png">equidistant1.png</a>
</li>
<li>
<a href = "equidistant2.png">equidistant2.png</a>
</li>
<li>
<a href = "equidistant3.png">equidistant3.png</a>
</li>
<li>
<a href = "fejer1.png">fejer1.png</a>
</li>
<li>
<a href = "fejer2.png">fejer2.png</a>
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>CHEBYSHEV1</b> returns the Type 1 Chebyshev points.
</li>
<li>
<b>CHEBYSHEV2</b> returns the Type 2 Chebyshev points.
</li>
<li>
<b>CHEBYSHEV3</b> returns the Type 3 Chebyshev points.
</li>
<li>
<b>CHEBYSHEV4</b> returns the Type 4 Chebyshev points.
</li>
<li>
<b>EQUIDISTANT1</b> returns the Type 1 Equidistant points.
</li>
<li>
<b>EQUIDISTANT2</b> returns the Type 2 Equidistant points.
</li>
<li>
<b>EQUIDISTANT3</b> returns the Type 3 Equidistant points.
</li>
<li>
<b>FEJER1</b> returns the Type 1 Fejer points.
</li>
<li>
<b>FEJER2</b> returns the Type 2 Fejer points.
</li>
<li>
<b>GET_UNIT</b> returns a free FORTRAN unit number.
</li>
<li>
<b>LAGRANGE_VALUE</b> evaluates the Lagrange polynomials.
</li>
<li>
<b>LEBESGUE_CONSTANT</b> estimates the Lebesgue constant for a set of points.
</li>
<li>
<b>LEBESGUE_FUNCTION</b> evaluates the Lebesgue function for a set of points.
</li>
<li>
<b>LEBESGUE_PLOT</b> plots the Lebesgue function for a set of points.
</li>
<li>
<b>R8VEC_PRINT</b> prints an R8VEC.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 04 March 2014.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>