-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathpolpak.html
1071 lines (1034 loc) · 32.5 KB
/
polpak.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<html>
<head>
<title>
POLPAK - Recursive Polynomials
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
POLPAK <br> Recursive Polynomials
</h1>
<hr>
<p>
<b>POLPAK</b>
is a C++ library which
evaluates a variety of mathematical functions.
</p>
<p>
It includes routines to evaluate the
recursively-defined polynomial families of
<ul>
<li>
Bernoulli
</li>
<li>
Bernstein
</li>
<li>
Cardan
</li>
<li>
Charlier
</li>
<li>
Chebyshev
</li>
<li>
Euler
</li>
<li>
Gegenbauer
</li>
<li>
Hermite
</li>
<li>
Jacobi
</li>
<li>
Krawtchouk
</li>
<li>
Laguerre
</li>
<li>
Legendre
</li>
<li>
Meixner
</li>
<li>
Zernike
</li>
</ul>
A variety of other polynomials and functions have been added.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>POLPAK</b> is available in
<a href = "../../c_src/polpak/polpak.html">a C version</a> and
<a href = "../../cpp_src/polpak/polpak.html">a C++ version</a> and
<a href = "../../f77_src/polpak/polpak.html">a FORTRAN77 version</a> and
<a href = "../../f_src/polpak/polpak.html">a FORTRAN90 version</a> and
<a href = "../../m_src/polpak/polpak.html">a MATLAB version</a> and
<a href = "../../py_src/polpak/polpak.html">a Python version</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/bernstein_polynomial/bernstein_polynomial.html">
BERNSTEIN_POLYNOMIAL</a>,
a C++ library which
evaluates the Bernstein polynomials,
useful for uniform approximation of functions;
</p>
<p>
<a href = "../../cpp_src/chebyshev_polynomial/chebyshev_polynomial.html">
CHEBYSHEV_POLYNOMIAL</a>,
a C++ library which
evaluates the Chebyshev polynomial and associated functions.
</p>
<p>
<a href = "../../cpp_src/cordic/cordic.html">
CORDIC</a>,
a C++ library which
uses the CORDIC method to compute certain elementary functions.
</p>
<p>
<a href = "../../cpp_src/fn/fn.html">
FN</a>,
a C++ library which
evaluates elementary and special functions,
by Wayne Fullerton.
</p>
<p>
<a href = "../../cpp_src/gsl/gsl.html">
GSL</a>
a C++ library which
evaluates many special functions.
</p>
<p>
<a href = "../../cpp_src/hermite_polynomial/hermite_polynomial.html">
HERMITE_POLYNOMIAL</a>,
a C++ library which
evaluates the physicist's Hermite polynomial, the probabilist's Hermite polynomial,
the Hermite function, and related functions.
</p>
<p>
<a href = "../../cpp_src/jacobi_polynomial/jacobi_polynomial.html">
JACOBI_POLYNOMIAL</a>,
a C++ library which
evaluates the Jacobi polynomial and associated functions.
</p>
<p>
<a href = "../../cpp_src/laguerre_polynomial/laguerre_polynomial.html">
LAGUERRE_POLYNOMIAL</a>,
a C++ library which
evaluates the Laguerre polynomial, the generalized Laguerre polynomial,
and the Laguerre function.
</p>
<p>
<a href = "../../cpp_src/legendre_polynomial/legendre_polynomial.html">
LEGENDRE_POLYNOMIAL</a>,
a C++ library which
evaluates the Legendre polynomial and associated functions.
</p>
<p>
<a href = "../../cpp_src/legendre_product_polynomial/legendre_product_polynomial.html">
LEGENDRE_PRODUCT_POLYNOMIAL</a>,
a C++ library which
defines Legendre product polynomials, creating a multivariate
polynomial as the product of univariate Legendre polynomials.
</p>
<p>
<a href = "../../cpp_src/lobatto_polynomial/lobatto_polynomial.html">
LOBATTO_POLYNOMIAL</a>,
a C++ library which
evaluates Lobatto polynomials, similar to Legendre polynomials
except that they are zero at both endpoints.
</p>
<p>
<a href = " ../../cpp_src/test_values/test_values.html">
TEST_VALUES</a>,
a C++ library which
stores values of many mathematical functions, and can be used for
testing.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Milton Abramowitz, Irene Stegun,<br>
Handbook of Mathematical Functions,<br>
National Bureau of Standards, 1964,<br>
ISBN: 0-486-61272-4,<br>
LC: QA47.A34.
</li>
<li>
Robert Banks,<br>
Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics,<br>
Princeton, 1999,<br>
ISBN13: 9780691059471,<br>
LC: QA93.B358.
</li>
<li>
Frank Benford,<br>
The Law of Anomalous Numbers,<br>
Proceedings of the American Philosophical Society,<br>
Volume 78, 1938, pages 551-572.
</li>
<li>
Paul Bratley, Bennett Fox, Linus Schrage,<br>
A Guide to Simulation,<br>
Second Edition,<br>
Springer, 1987,<br>
ISBN: 0387964673,<br>
LC: QA76.9.C65.B73.
</li>
<li>
Chad Brewbaker,<br>
Lonesum (0,1)-matrices and poly-Bernoulli numbers of negative
index,<br>
Master of Science Thesis,<br>
Computer Science Department,<br>
Iowa State University, 2005.
</li>
<li>
William Briggs, Van Emden Henson,<br>
The DFT: An Owner's Manual for the Discrete Fourier Transform,<br>
SIAM, 1995,<br>
ISBN13: 978-0-898713-42-8,<br>
LC: QA403.5.B75.
</li>
<li>
Theodore Chihara,<br>
An Introduction to Orthogonal Polynomials,<br>
Gordon and Breach, 1978,<br>
ISBN: 0677041500,<br>
LC: QA404.5 C44.
</li>
<li>
William Cody,<br>
Rational Chebyshev Approximations for the Error Function,<br>
Mathematics of Computation,<br>
Volume 23, Number 107, July 1969, pages 631-638.
</li>
<li>
Robert Corless, Gaston Gonnet, David Hare, David Jeffrey,
Donald Knuth,<br>
On the Lambert W Function,<br>
Advances in Computational Mathematics,<br>
Volume 5, Number 1, December 1996, pages 329-359.
</li>
<li>
Bennett Fox,<br>
Algorithm 647:
Implementation and Relative Efficiency of Quasirandom
Sequence Generators,<br>
ACM Transactions on Mathematical Software,<br>
Volume 12, Number 4, December 1986, pages 362-376.
</li>
<li>
Walter Gautschi,<br>
Orthogonal Polynomials: Computation and Approximation,<br>
Oxford, 2004,<br>
ISBN: 0-19-850672-4,<br>
LC: QA404.5 G3555.
</li>
<li>
Ralph Hartley,<br>
A More Symmetrical Fourier Analysis Applied to Transmission
Problems,<br>
Proceedings of the Institute of Radio Engineers,<br>
Volume 30, 1942, pages 144-150.
</li>
<li>
Brian Hayes,<br>
The Vibonacci Numbers,<br>
American Scientist,<br>
Volume 87, Number 4, July-August 1999, pages 296-301.
</li>
<li>
Brian Hayes,<br>
Why W?,<br>
American Scientist,<br>
Volume 93, Number 2, March-April 2005, pages 104-108.
</li>
<li>
Ted Hill,<br>
The First Digit Phenomenon,<br>
American Scientist,<br>
Volume 86, Number 4, July/August 1998, pages 358-363.
</li>
<li>
Douglas Hofstadter,<br>
Goedel, Escher, Bach,<br>
Basic Books, 1979,<br>
ISBN: 0465026567,<br>
LC: QA9.8H63.
</li>
<li>
Masanobu Kaneko,<br>
Poly-Bernoulli Numbers,<br>
Journal Theorie des Nombres Bordeaux,<br>
Volume 9, Number 1, 1997, pages 221-228.
</li>
<li>
Cleve Moler,<br>
Trigonometry is a Complex Subject,<br>
MATLAB News and Notes, Summer 1998.
</li>
<li>
Thomas Osler,<br>
Cardan Polynomials and the Reduction of Radicals,<br>
Mathematics Magazine, <br>
Volume 74, Number 1, February 2001, pages 26-32.
</li>
<li>
J Simoes Pereira,<br>
Algorithm 234: Poisson-Charliers Polynomials,<br>
Communications of the ACM,<br>
Volume 7, Number 7, July 1964, page 420.
</li>
<li>
Charles Pinter,<br>
A Book of Abstract Algebra,<br>
Second Edition,<br>
McGraw Hill, 2003,<br>
ISBN: 0072943505,<br>
LC: QA162.P56.
</li>
<li>
Ralph Raimi,<br>
The Peculiar Distribution of First Digits,<br>
Scientific American,<br>
December 1969, pages 109-119.
</li>
<li>
Dennis Stanton, Dennis White,<br>
Constructive Combinatorics,<br>
Springer, 1986,<br>
ISBN: 0387963472,<br>
LC: QA164.S79.
</li>
<li>
Gabor Szego,<br>
Orthogonal Polynomials,<br>
American Mathematical Society, 1992,<br>
ISBN: 0821810235,<br>
LC: QA3.A5.v23.
</li>
<li>
Daniel Velleman, Gregory Call,<br>
Permutations and Combination Locks,<br>
Mathematics Magazine,<br>
Volume 68, Number 4, October 1995, pages 243-253.
</li>
<li>
Divakar Viswanath,<br>
Random Fibonacci sequences and the number 1.13198824,<br>
Mathematics of Computation,<br>
Volume 69, Number 231, July 2000, pages 1131-1155.
</li>
<li>
Michael Waterman,<br>
Introduction to Computational Biology,<br>
Chapman and Hall, 1995,<br>
ISBN: 0412993910,<br>
LC: QH438.4.M33.W38.
</li>
<li>
Eric Weisstein,<br>
CRC Concise Encyclopedia of Mathematics,<br>
CRC Press, 2002,<br>
Second edition,<br>
ISBN: 1584883472,<br>
LC: QA5.W45
</li>
<li>
Stephen Wolfram,<br>
The Mathematica Book,<br>
Fourth Edition,<br>
Cambridge University Press, 1999,<br>
ISBN: 0-521-64314-7,<br>
LC: QA76.95.W65.
</li>
<li>
ML Wolfson, HV Wright,<br>
ACM Algorithm 160: Combinatorial of M Things Taken N at a Time,<br>
Communications of the ACM,<br>
Volume 6, Number 4, April 1963, page 161.
</li>
<li>
Shanjie Zhang, Jianming Jin,<br>
Computation of Special Functions,<br>
Wiley, 1996,<br>
ISBN: 0-471-11963-6,<br>
LC: QA351.C45.
</li>
<li>
Daniel Zwillinger, editor,<br>
CRC Standard Mathematical Tables and Formulae,<br>
30th Edition,<br>
CRC Press, 1996,<br>
ISBN: 0-8493-2479-3,<br>
LC: QA47.M315.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "polpak.cpp">polpak.cpp</a>, the source code;
</li>
<li>
<a href = "polpak.hpp">polpak.hpp</a>, the include file for POLPAK;
</li>
<li>
<a href = "polpak.sh">polpak.sh</a>, commands to compile the code;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "polpak_prb.cpp">polpak_prb.cpp</a>, the calling program;
</li>
<li>
<a href = "polpak_prb.sh">polpak_prb.sh</a>, commands to
compile, link and run the sample problem;
</li>
<li>
<a href = "polpak_prb_output.txt">polpak_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>AGM</b> computes the arithmetic-geometric mean of A and B.
</li>
<li>
<b>AGM_VALUES</b> returns some values of the AGM.
</li>
<li>
<b>AGUD</b> evaluates the inverse Gudermannian function.
</li>
<li>
<b>ALIGN_ENUM</b> counts the alignments of two sequences of M and N elements.
</li>
<li>
<b>ARC_COSINE</b> computes the arc cosine function, with argument truncation.
</li>
<li>
<b>ARC_SINE</b> computes the arc sine function, with argument truncation.
</li>
<li>
<b>ASINH2</b> returns the inverse hyperbolic sine of a number.
</li>
<li>
<b>ATAN4</b> computes the inverse tangent of the ratio Y / X.
</li>
<li>
<b>ATANH2</b> returns the inverse hyperbolic tangent of a number.
</li>
<li>
<b>BELL</b> returns the Bell numbers from 0 to N.
</li>
<li>
<b>BELL_VALUES</b> returns some values of the Bell numbers.
</li>
<li>
<b>BENFORD</b> returns the Benford probability of one or more significant digits.
</li>
<li>
<b>BERNOULLI_NUMBER</b> computes the value of the Bernoulli numbers B(0) through B(N).
</li>
<li>
<b>BERNOULLI_NUMBER2</b> evaluates the Bernoulli numbers.
</li>
<li>
<b>BERNOULLI_NUMBER3</b> computes the value of the Bernoulli number B(N).
</li>
<li>
<b>BERNOULLI_NUMBER_VALUES</b> returns some values of the Bernoulli numbers.
</li>
<li>
<b>BERNOULLI_POLY</b> evaluates the Bernoulli polynomial of order N at X.
</li>
<li>
<b>BERNOULLI_POLY2</b> evaluates the N-th Bernoulli polynomial at X.
</li>
<li>
<b>BERNSTEIN_POLY</b> evaluates the Bernstein polynomials at a point X.
</li>
<li>
<b>BERNSTEIN_POLY_VALUES</b> returns some values of the Bernstein polynomials.
</li>
<li>
<b>BETA</b> returns the value of the Beta function.
</li>
<li>
<b>BETA_VALUES</b> returns some values of the Beta function.
</li>
<li>
<b>BPAB</b> evaluates at X the Bernstein polynomials based in [A,B].
</li>
<li>
<b>CARDAN</b> evaluates the Cardan polynomials.
</li>
<li>
<b>CARDAN_POLY_COEF</b> computes the coefficients of the N-th Cardan polynomial.
</li>
<li>
<b>CARDINAL_COS</b> evaluates the J-th cardinal cosine basis function.
</li>
<li>
<b>CARDINAL_SIN</b> evaluates the J-th cardinal sine basis function.
</li>
<li>
<b>CATALAN</b> computes the Catalan numbers, from C(0) to C(N).
</li>
<li>
<b>CATALAN_ROW_NEXT</b> computes row N of Catalan's triangle.
</li>
<li>
<b>CATALAN_VALUES</b> returns some values of the Catalan numbers.
</li>
<li>
<b>CHARLIER</b> evaluates Charlier polynomials at a point.
</li>
<li>
<b>CHEBY_T_POLY</b> evaluates Chebyshev polynomials T(n,x).
</li>
<li>
<b>CHEBY_T_POLY_COEF</b> evaluates coefficients of Chebyshev polynomials T(n,x).
</li>
<li>
<b>CHEBY_T_POLY_VALUES</b> returns values of Chebyshev polynomials T(n,x).
</li>
<li>
<b>CHEBY_T_POLY_ZERO</b> returns zeroes of Chebyshev polynomials T(n,x).
</li>
<li>
<b>CHEBY_U_POLY</b> evaluates Chebyshev polynomials U(n,x).
</li>
<li>
<b>CHEBY_U_POLY_COEF</b> evaluates coefficients of Chebyshev polynomials U(n,x).
</li>
<li>
<b>CHEBY_U_POLY_VALUES</b> returns values of Chebyshev polynomials U(n,x).
</li>
<li>
<b>CHEBY_U_POLY_ZERO</b> returns zeroes of Chebyshev polynomials U(n,x).
</li>
<li>
<b>CHEBYSHEV_DISCRETE</b> evaluates discrete Chebyshev polynomials at a point.
</li>
<li>
<b>COLLATZ_COUNT</b> counts the number of terms in a Collatz sequence.
</li>
<li>
<b>COLLATZ_COUNT_MAX</b> seeks the maximum Collatz count for 1 through N.
</li>
<li>
<b>COLLATZ_COUNT_VALUES</b> returns some values of the Collatz count function.
</li>
<li>
<b>COMB_ROW</b> computes row N of Pascal's triangle.
</li>
<li>
<b>COMMUL</b> computes a multinomial combinatorial coefficient.
</li>
<li>
<b>COMPLETE_SYMMETRIC_POLY</b> evaluates a complete symmetric polynomial.
</li>
<li>
<b>COS_DEG</b> returns the cosine of an angle given in degrees.
</li>
<li>
<b>COS_POWER_INT</b> evaluates the cosine power integral.
</li>
<li>
<b>COS_POWER_INT_VALUES</b> returns some values of the sine power integral.
</li>
<li>
<b>E_CONSTANT</b> returns the value of the base of the natural logarithm system.
</li>
<li>
<b>ERF_VALUES</b> returns some values of the ERF or "error" function.
</li>
<li>
<b>ERROR_F</b> evaluates the error function ERF(X).
</li>
<li>
<b>ERROR_F_INVERSE</b> inverts the error function ERF.
</li>
<li>
<b>EULER_CONSTANT</b> returns the value of the Euler-Mascheroni constant.
</li>
<li>
<b>EULER_NUMBER</b> computes the Euler numbers.
</li>
<li>
<b>EULER_NUMBER2</b> computes the Euler numbers.
</li>
<li>
<b>EULER_NUMBER_VALUES</b> returns some values of the Euler numbers.
</li>
<li>
<b>EULER_POLY</b> evaluates the N-th Euler polynomial at X.
</li>
<li>
<b>EULERIAN</b> computes the Eulerian number E(N,K).
</li>
<li>
<b>F_HOFSTADTER</b> computes the Hofstadter F sequence.
</li>
<li>
<b>FIBONACCI_DIRECT</b> computes the N-th Fibonacci number directly.
</li>
<li>
<b>FIBONACCI_FLOOR</b> returns the largest Fibonacci number less or equal to N.
</li>
<li>
<b>FIBONACCI_RECURSIVE</b> computes the first N Fibonacci numbers.
</li>
<li>
<b>G_HOFSTADTER</b> computes the Hofstadter G sequence.
</li>
<li>
<b>GAMMA_LOG_VALUES</b> returns some values of the Log Gamma function.
</li>
<li>
<b>GAMMA_VALUES</b> returns some values of the Gamma function.
</li>
<li>
<b>GEGENBAUER_POLY</b> computes the Gegenbauer polynomials C(0:N,ALPHA,X).
</li>
<li>
<b>GEGENBAUER_POLY_VALUES</b> returns some values of the Gegenbauer polynomials.
</li>
<li>
<b>GEN_HERMITE_POLY</b> evaluates the generalized Hermite polynomials at X.
</li>
<li>
<b>GEN_LAGUERRE_POLY</b> evaluates generalized Laguerre polynomials.
</li>
<li>
<b>GUD</b> evaluates the Gudermannian function.
</li>
<li>
<b>GUD_VALUES</b> returns some values of the Gudermannian function.
</li>
<li>
<b>H_HOFSTADTER</b> computes the Hofstadter H sequence.
</li>
<li>
<b>HAIL</b> computes the hail function.
</li>
<li>
<b>HERMITE_POLY</b> evaluates the Hermite polynomials at X.
</li>
<li>
<b>HERMITE_POLY_COEF</b> evaluates the coefficients of the physicist's Hermite polynomial H(n,x).
</li>
<li>
<b>HERMITE_POLY_VALUES</b> returns some values of the Hermite polynomial.
</li>
<li>
<b>HYPERGEOMETRIC_CDF_VALUES</b> returns some values of the hypergeometric function 2F1.
</li>
<li>
<b>I4_CHOOSE</b> computes the binomial coefficient C(N,K).
</li>
<li>
<b>I4_FACTOR</b> factors an integer into prime factors.
</li>
<li>
<b>I4_FACTORIAL</b> computes the factorial of N.
</li>
<li>
<b>I4_FACTORIAL_VALUES</b> returns values of the factorial function.
</li>
<li>
<b>I4_FACTORIAL2</b> computes the double factorial function.
</li>
<li>
<b>I4_FACTORIAL2_VALUES</b> returns values of the double factorial function.
</li>
<li>
<b>I4_GCD</b> finds the greatest common divisor of two I4's.
</li>
<li>
<b>I4_IS_PRIME</b> reports whether an I4 is prime.
</li>
<li>
<b>I4_IS_TRIANGULAR</b> determines whether an I4 is triangular.
</li>
<li>
<b>I4_MAX</b> returns the maximum of two I4's.
</li>
<li>
<b>I4_MIN</b> returns the smaller of two I4's.
</li>
<li>
<b>I4_MODP</b> returns the nonnegative remainder of I4 division.
</li>
<li>
<b>I4_PARTITION_DISTINCT_COUNT</b> returns any value of Q(N).
</li>
<li>
<b>I4_POCHHAMMER</b> returns the value of ( I * (I+1) * ... * (J-1) * J ).
</li>
<li>
<b>I4_SIGN</b> returns the sign of an integer.
</li>
<li>
<b>I4_SWAP</b> switches two integer values.
</li>
<li>
<b>I4_TO_TRIANGLE</b> converts an integer to triangular coordinates.
</li>
<li>
<b>I4_UNIFORM_AB</b> returns a scaled pseudorandom I4.
</li>
<li>
<b>I4MAT_PRINT</b> prints an I4MAT.
</li>
<li>
<b>I4MAT_PRINT_SOME</b> prints some of an I4MAT.
</li>
<li>
<b>JACOBI_POLY</b> evaluates the Jacobi polynomials at X.
</li>
<li>
<b>JACOBI_POLY_VALUES</b> returns some values of the Jacobi polynomial.
</li>
<li>
<b>JACOBI_SYMBOL</b> evaluates the Jacobi symbol (Q/P).
</li>
<li>
<b>KRAWTCHOUK</b> evaluates the Krawtchouk polynomials at X.
</li>
<li>
<b>LAGUERRE_ASSOCIATED</b> evaluates the associated Laguerre polynomials L(N,M,X) at X.
</li>
<li>
<b>LAGUERRE_POLY</b> evaluates the Laguerre polynomials at X.
</li>
<li>
<b>LAGUERRE_POLY_COEF</b> evaluates the Laguerre polynomial coefficients.
</li>
<li>
<b>LAGUERRE_POLYNOMIAL_VALUES</b> returns some values of the Laguerre polynomial.
</li>
<li>
<b>LEGENDRE_ASSOCIATED</b> evaluates the associated Legendre functions.
</li>
<li>
<b>LEGENDRE_ASSOCIATED_NORMALIZED:</b> normalized associated Legendre functions.
</li>
<li>
<b>LEGENDRE_ASSOCIATED_NORMALIZED_VALUES:</b> normalied associated Legendre.
</li>
<li>
<b>LEGENDRE_ASSOCIATED_VALUES</b> returns values of associated Legendre functions.
</li>
<li>
<b>LEGENDRE_FUNCTION_Q</b> evaluates the Legendre Q functions.
</li>
<li>
<b>LEGENDRE_FUNCTION_Q_VALUES</b> returns values of the Legendre Q function.
</li>
<li>
<b>LEGENDRE_POLY</b> evaluates the Legendre polynomials.
</li>
<li>
<b>LEGENDRE_POLY_COEF</b> evaluates the Legendre polynomial coefficients.
</li>
<li>
<b>LEGENDRE_POLY_VALUES</b> returns values of the Legendre polynomials.
</li>
<li>
<b>LEGENDRE_SYMBOL</b> evaluates the Legendre symbol (Q/P).
</li>
<li>
<b>LERCH</b> estimates the Lerch transcendent function.
</li>
<li>
<b>LERCH_VALUES</b> returns some values of the Lerch transcendent function.
</li>
<li>
<b>LOCK</b> returns the number of codes for a lock with N buttons.
</li>
<li>
<b>MEIXNER</b> evaluates Meixner polynomials at a point.
</li>
<li>
<b>MERTENS</b> evaluates the Mertens function.
</li>
<li>
<b>MERTENS_VALUES</b> returns some values of the Mertens function.
</li>
<li>
<b>MOEBIUS</b> returns the value of MU(N), the Moebius function of N.
</li>
<li>
<b>MOEBIUS_VALUES</b> returns some values of the Moebius function.
</li>
<li>
<b>MOTZKIN</b> returns the Motzkin numbers up to order N.
</li>
<li>
<b>NORMAL_01_CDF_INV</b> inverts the standard normal CDF.
</li>
<li>
<b>OMEGA</b> returns OMEGA(N), the number of distinct prime divisors of N.
</li>
<li>
<b>OMEGA_VALUES</b> returns some values of the OMEGA function.
</li>
<li>
<b>PARTITION_COUNT_VALUES</b> returns values of the integer partition count.
</li>
<li>
<b>PARTITION_DISTINCT_COUNT_VALUES</b> returns some values of Q(N).
</li>
<li>
<b>PENTAGON_NUM</b> computes the N-th pentagonal number.
</li>
<li>
<b>PHI</b> computes the number of relatively prime predecessors of an integer.
</li>
<li>
<b>PHI_VALUES</b> returns some values of the PHI function.
</li>
<li>
<b>PLANE_PARTITION_NUM</b> returns the number of plane partitions of the integer N.
</li>
<li>
<b>POLY_BERNOULLI</b> evaluates the poly-Bernolli numbers with negative index.
</li>
<li>
<b>POLY_COEF_COUNT:</b> polynomial coefficient count given dimension and degree.
</li>
<li>
<b>PRIME</b> returns any of the first PRIME_MAX prime numbers.
</li>
<li>
<b>PSI_VALUES</b> returns some values of the Psi or Digamma function.
</li>
<li>
<b>PYRAMID_NUM</b> returns the N-th pyramidal number.
</li>
<li>
<b>R8_ABS</b> returns the absolute value of an R8.
</li>
<li>
<b>R8_ACOSH</b> returns the inverse hyperbolic cosine of a number.
</li>
<li>
<b>R8_ASINH</b> returns the inverse hyperbolic sine of a number.
</li>
<li>
<b>R8_ATANH</b> returns the inverse hyperbolic tangent of a number.
</li>
<li>
<b>R8_CHOOSE</b> computes the combinatorial coefficient C(N,K).
</li>
<li>
<b>R8_COT</b> returns the cotangent of an angle.
</li>
<li>
<b>R8_COT_DEG</b> returns the cotangent of an angle given in degrees.
</li>
<li>
<b>R8_CSC</b> returns the cosecant of X.
</li>
<li>
<b>R8_CSC_DEG</b> returns the cosecant of an angle given in degrees.
</li>
<li>
<b>R8_EPSILON</b> returns the R8 roundoff unit.
</li>
<li>
<b>R8_FACTORIAL</b> returns the factorial function as an R8.
</li>
<li>
<b>R8_FACTORIAL_LOG</b> computes the natural logarithm of the factorial function.
</li>
<li>
<b>R8_FACTORIAL_LOG_VALUES</b> returns values of log(factorial(n)).
</li>
<li>
<b>R8_FACTORIAL_VALUES</b> returns values of the real factorial function.
</li>
<li>
<b>R8_FACTORIAL2</b> computes the double factorial function.
</li>
<li>
<b>R8_GAMMA</b> evaluates Gamma(X) for a real argument.
</li>
<li>
<b>R8_GAMMA_LOG</b> calculates the natural logarithm of GAMMA ( X ) for positive X.
</li>
<li>
<b>R8_HUGE</b> returns a "huge" R8.
</li>
<li>
<b>R8_HYPER_2F1</b> evaluates the hypergeometric function F(A,B,C,X).
</li>
<li>
<b>R8_MAX</b> returns the maximum of two R8's.
</li>
<li>
<b>R8_MIN</b> returns the minimum of two R8's.
</li>
<li>
<b>R8_MOP</b> returns the I-th power of -1 as an R8 value.
</li>
<li>
<b>R8_NINT</b> returns the integer that is nearest to a real value.
</li>
<li>
<b>R8_PI</b> returns the value of PI.
</li>
<li>
<b>R8_PSI</b> evaluates the function Psi(X).
</li>
<li>
<b>R8_UNIFORM_01</b> is a portable pseudorandom number generator.
</li>
<li>
<b>R8POLY_DEGREE</b> returns the degree of a polynomial.
</li>
<li>
<b>R8POLY_PRINT</b> prints out a polynomial.
</li>
<li>
<b>R8POLY_VALUE</b> evaluates a double precision polynomial.
</li>
<li>
<b>R8VEC_LINSPACE_NEW</b> creates a vector of linearly spaced values.
</li>
<li>
<b>R8VEC_PRINT</b> prints an R8VEC.
</li>
<li>
<b>R8VEC_ZERO</b> zeroes a real vector.
</li>
<li>
<b>S_LEN_TRIM</b> returns the length of a string to the last nonblank.
</li>
<li>
<b>SEC_DEG</b> returns the secant of an angle given in degrees.
</li>
<li>
<b>SIGMA</b> returns the value of SIGMA(N), the divisor sum.
</li>
<li>
<b>SIGMA_VALUES</b> returns some values of the Sigma function.
</li>
<li>
<b>SIN_DEG</b> returns the sine of an angle given in degrees.
</li>
<li>
<b>SIN_POWER_INT</b> evaluates the sine power integral.
</li>
<li>
<b>SIN_POWER_INT_VALUES</b> returns some values of the sine power integral.
</li>
<li>
<b>SLICE:</b> maximum number of pieces created by a given number of slices.
</li>
<li>
<b>SPHERICAL_HARMONIC</b> evaluates spherical harmonic functions.