-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathranks.py
100 lines (69 loc) · 2.73 KB
/
ranks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#all rank functions should return a single real value, that can be used for sorting
#x is a vector of real values (can be integers if y is regularly sampled)
# representing when the samples in y were taken
#y is a vector of real values, as large as x, where each entry is the
# sample value at the corresponding x time
import scipy
from scipy import stats
#finds the slope and y-intercept of a line through
#the data that minimizes the sum of the squared errors
def linearRegression( x, y ):
'''
n = len( y );
S_x = sum( x );
S_y = sum( y );
xx = []
for xVal in x:
xx.append( xVal*xVal )
yy = []
for yVal in y:
yy.append( yVal*yVal )
xy = []
for ii in range(0,len(x)):
xy.append( x[ii] * y[ii] )
S_xx = sum( xx );
S_yy = sum( yy );
S_xy = sum( xy );
beta_hat = ((n*S_xy) - (S_x*S_y)) / ((n*S_xx) - (S_x*S_x));
alpha_hat = ((1.0/n)*S_y) - (beta_hat*(1.0/n)*S_x);
#s_2_e = (1.0/(n*(n-2))) * ((n*S_yy) - (S_y*S_y) - (beta_hat*beta_hat)*((n*S_xx) - (S_x*S_x)) );
#s_2_beta = (n*s_2_e*s_2_e) / ((n*S_xx) - (S_x*S_x));
#s_2_alpha = (s_2_beta*s_2_beta)*(1/n)*S_xx;
#print beta_hat
#print alpha_hat
return [beta_hat, alpha_hat]
'''
return stats.linregress(x,y)
#################################################################################################
## END linearRegression(...)
#################################################################################################
#does basic linear regression and returns the slope as the score
def slopeRank( x, y ):
r = linearRegression( x, y )
return r[0]
#################################################################################################
## END slopeRank(...)
#################################################################################################
#returns expected percentage gain/loss based on the line in the data
def expectedRatioGain( x, y ):
r = linearRegression( x, y )
slope = r[0]
y_int = r[1]
#find largest x (most recent)
max_x_set = 0
may_x = 0
corresp_y = 0.1
for ii in range(0, len(x)):
if( (max_x_set == 0) or (x[ii] > max_x) ):
max_x_set = 1
max_x = x[ii]
corresp_y = y[ii]
lineValue = slope*max_x + y_int
distanceBelowLine = lineValue - corresp_y #negative if above projected line
#print [slope, y_int]
#print [lineValue, distanceBelowLine]
#print [max_x, corresp_y]
return distanceBelowLine / corresp_y
#################################################################################################
## END expectedRatioGain(...)
#################################################################################################