-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathreview_session.tex
605 lines (459 loc) · 17.1 KB
/
review_session.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
\ifdefined\ishandout
\documentclass[11pt,english,handout]{beamer}
\else
\documentclass[11pt,english]{beamer}
\fi
\usepackage{mathptmx}
\renewcommand{\sfdefault}{lmss}
\renewcommand{\familydefault}{\sfdefault}
\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\PassOptionsToPackage{normalem}{ulem}
\usepackage{ulem}
\usepackage{caption}
\captionsetup{labelformat=empty}
\usepackage{bbm}
\usepackage{upgreek}
\usepackage{graphicx}
\setbeamertemplate{section in toc}[sections numbered]
\makeatletter
\usepackage{caption}
\usepackage{bm}
\usepackage{subfig}
\captionsetup[table]{skip=10pt}
\usepackage{pdflscape}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Textclass specific LaTeX commands.
% this default might be overridden by plain title style
\newcommand\makebeamertitle{\frame{\maketitle}}%
% (ERT) argument for the TOC
\AtBeginDocument{%
\let\origtableofcontents=\tableofcontents
\def\tableofcontents{\@ifnextchar[{\origtableofcontents}{\gobbletableofcontents}}
\def\gobbletableofcontents#1{\origtableofcontents}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
%\documentclass[presentation]{beamer}
\def\Tiny{\fontsize{7pt}{8pt}\selectfont}
\def\Normal{\fontsize{8pt}{10pt}\selectfont}
\usetheme{Madrid}
\usecolortheme{lily}
%\setbeamercovered{transparent}
\useinnertheme{rounded}
\setbeamertemplate{footline}{\hfill\Normal{\insertframenumber/\inserttotalframenumber}}
%\setbeamertemplate{footline}{}
\setbeamertemplate{navigation symbols}{}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\setbeamertemplate{footline}{\hfill\insertframenumber/\inserttotalframenumber}
\setbeamertemplate{navigation symbols}{}
%\usepackage{times} % fonts are up to you
\usepackage{graphicx}
%\usepackage{graphics}
\usepackage{epsfig}
\usepackage{bm}
\usepackage{epsf}
\usepackage{float}
\usepackage[final]{pdfpages}
\usepackage{multirow}
\usepackage{colortbl}
\usepackage{xkeyval}
%\usepackage{sgame}
%\usepackage{pst-node}
\usepackage{listings}
\usepackage{ifthen}
%\usepackage{hyperref}
\usepackage{tikz}
%\usepackage{times} % fonts are up to you
%\usepackage{graphicx}
%\usepackage{graphics}
\usepackage{epsfig,bm,epsf,float}
\usepackage[final]{pdfpages}
\usepackage{xcolor,multirow,colortbl}
\usepackage{xkeyval}
\usepackage{verbatim}
%\usepackage{sgame}
%\usepackage{pst-node}
\usepackage{listings}
%\usepackage{handoutWithNotes}
%\pgfpagesuselayout{3 on 1 with notes}[letterpaper,border shrink=5mm]
%\pgfpagesuselayout{2 on 1 with notes landscape}[letterpaper,border shrink=5mm]
\usepackage{setspace}
\usepackage{ragged2e}
\usepackage{pdfpages}
\setbeamersize{text margin left=1em,text margin right=1em} % CambridgeUS spacing if you use default instead
%\pdfmapfile{+sansmathaccent.map}
% Table formatting
\usepackage{booktabs}
% Decimal align
\usepackage{dcolumn}
\newcolumntype{d}[0]{D{.}{.}{5}}
\global\long\def\expec#1{\mathbb{E}\left[#1\right]}
\global\long\def\var#1{\mathrm{Var}\left[#1\right]}
\global\long\def\cov#1{\mathrm{Cov}\left[#1\right]}
\global\long\def\prob#1{\mathrm{Prob}\left[#1\right]}
\global\long\def\one{\mathbf{1}}
\global\long\def\diag{\operatorname{diag}}
\global\long\def\expe#1#2{\mathbb{E}_{#1}\left[#2\right]}
\DeclareMathOperator*{\plim}{\text{plim}}
%\usefonttheme[onlymath]{serif}
\usepackage{appendixnumberbeamer}
\renewcommand{\thefootnote}{}
\setbeamertemplate{footline}
{
\leavevmode%
% \hbox{%
% \begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
%\usebeamerfont{date in head/foot}\insertshortdate{}\hspace*{2em}%
\hfill
%turning the next line into a comment, erases the frame numbers
\insertframenumber{}\hspace*{2ex}\vspace{1ex}
% \end{beamercolorbox}}%
}
\definecolor{blue}{RGB}{0, 0, 210}
\definecolor{red}{RGB}{170, 0, 0}
\makeatother
\usepackage[english]{babel}
\usepackage{tikz}
\newcommand*\circled[1]{\tikz[baseline=(char.base)]{ \node[circle,ball color=structure.fg, shade, color=white,inner sep=1.2pt] (char) {\tiny #1};}}
\makeatletter
\let\save@measuring@true\measuring@true
\def\measuring@true{%
\save@measuring@true
\def\beamer@sortzero##1{\beamer@ifnextcharospec{\beamer@sortzeroread{##1}}{}}%
\def\beamer@sortzeroread##1<##2>{}%
\def\beamer@finalnospec{}%
}
\makeatother
\setbeamersize{text margin left= .8em,text margin right=1em}
\newenvironment{wideitemize}{\itemize\addtolength{\itemsep}{10pt}}{\enditemize}
\newenvironment{wideitemizeshort}{\itemize}{\enditemize}
\newcommand{\indep}{\perp\!\!\!\!\perp}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}
\begin{document}
%% Title slide
\begin{frame}[noframenumbering]{}
\vspace{0.5cm}
\title[]{Review Session}
\author{Jonathan Roth}
\date{Mathematical Econometrics I \\ Brown University\\Fall 2023}
\titlepage {\small{}\ }\thispagestyle{empty} \vspace{-30pt}
\end{frame}
\begin{frame}{Overview}
\begin{enumerate}
\item
Structure of final and logistics
\item
Key course concepts
\item
Your questions
\end{enumerate}
\end{frame}
\begin{frame}{Structure of final}
\begin{wideitemize}
\item
The structure of the final will be similar to the final from last year
\item
There will be 1-2 analytical questions that will ask you to use mathematical tools we've learned in this course
\item
There will be questions about a new empirical application. You will be required to state and evaluate assumptions under which we can learn about causal effects, and comment on empirical results.
\end{wideitemize}
\end{frame}
\begin{frame}{Logistics for final}
\begin{wideitemize}
\item
The final exam will be in-person and 2 hours long
\begin{wideitemize}
\item
Please email me and your TAs if you have a SAS accommodation for extra time
\end{wideitemize}
\item
The final exam will be December 15 at 2pm in MacMillan Hall 117
\item
You may bring 2 8.5x11'' pieces of paper with notes
\begin{itemize}
\item
E.g. your ``cheatsheet'' for the midterm plus a new one
\end{itemize}
\end{wideitemize}
\end{frame}
\begin{frame}{Overview of course}
\begin{wideitemize}
\item
In this class, we focused primarily on how we can answer \underline{causal} economic questions with data
\begin{wideitemize}
\item
What is the effect of going to Brown versus URI on earnings?
\item
What is the effect of gaining health insurance on depression?
\item
What is the effect of the minimum wage on employment?
\end{wideitemize}
\pause
\item
We formalized the idea of a causal effect with \textit{potential outcomes}
\begin{wideitemize}
\item
Each unit has a potential outcome under both treatment and control, $Y_i(1)$ and $Y_i(0)$
\item
E.g. $Y_i(1) =$ earnings if go to Brown; $Y_i(0)=$ earnings if go to URI
\item
We observe only $Y_i(1)$ for treated units and $Y_i(0)$ for control units
\item
We are interested in the causal effect $Y_i(1) - Y_i(0)$ (or averages of this over the population)
\end{wideitemize}
\end{wideitemize}
\end{frame}
\begin{frame}{Two key challenges}
There are two key challenges in answering causal questions with data: \medskip
\begin{wideitemize}
\item
We never observe the counterfactual outcome for each unit
\begin{itemize}
\item
E.g., we observe earnings for Brown students ($Y_i(1)$), but not their earnings if they'd gone to URI ($Y_i(0)$)
\end{itemize}
\item
We typically only observe data for a sample rather than for the full population that we care about
\begin{itemize}
\item
E.g., we only have data from a survey of a small fraction of recent graduates
\end{itemize}
\end{wideitemize}
\end{frame}
\begin{frame}{Identification versus Statistical Inference}
We typically tackle these two problems separately: \medskip
\pause
\begin{wideitemize}
\item
\textbf{Identification:} what could we learn about the causal effect if we had the observable data from the full population?
\pause
\begin{wideitemize}
\item
Typically start with some assumptions about how treatment is assigned
\item
Under these assumptions, show that this causal effect is a function of observable population means
\end{wideitemize}
\pause
\item
\textbf{Statistical Inference:} what can we learn about the observable features of the population given the sample? \pause
\begin{wideitemize}
\item
Typically estimate population means by plugging in sample means
\item
When we need to estimate conditional means, we use regression to approximation the CEF
\item
We can use statistical tools to test hypotheses and construct confidence intervals
\end{wideitemize}
\end{wideitemize}
\end{frame}
\begin{frame}{5 Different Types of Identification Arguments}
\begin{wideitemize}
\item
\textbf{Experiments:} if treatment is randomized, can compare outcomes for treated pop to control pop
\pause
\item
\textbf{Conditional unconfoundedness:} assume treatment assignment is like an experiment conditional on observable characteristics --- compare treated/control populations with the same covariates
\pause
\item
\textbf{Difference-in-differences:} allow for there to be selection into treatment, but assume selection bias is constant over time --- compare differences after treatment occurs to differences before treatment
\pause
\item
\textbf{Instrumental variables:} assume that assignment of an instrument is random and affects outcome only through treatment --- compare populations with different values of the instrument
\pause
\item
\textbf{Regression discontinuity:} assume that confounding factors evolve continuously around the cutoff --- compare population with scores just below the cutoff to just above
\end{wideitemize}
\end{frame}
\begin{frame}{Experiments}
Sample means of depression
\begin{tabular}{lll}
& Control Group & Treated Group \\
Mean & 0.329 & 0.306\\
SD & 0.470 & 0.461 \\
N & 10426 & 13315
\end{tabular}
\begin{wideitemize}
\item
Identification: \pause{}$D_i \indep (Y_i(1),Y_i(0)) \implies ATE = E[Y_i | D_i =1 ] - E[Y_i | D_i = 0]$ \\ \medskip Make sure you know how to derive this!
\pause
\item
Estimation: replace population means with sample means!
\pause
\item
Estimation 2: can also estimate with OLS
$$Y_i = \alpha + \beta D_i + \epsilon_i$$
\end{wideitemize}
\end{frame}
\begin{frame}{Conditional unconfoundedness}
\begin{wideitemize}
\item
Example: maybe where you go to college is as-good-as-random conditional on where you get in (Dale \& Krueger)
\pause
\item
Identification: $D_i \indep (Y_i(1),Y_i(0)) | X_i \implies CATE(x) = E[Y_i | D_i =1 , X_i = x] - E[Y_i | D_i = 0, X_i = x]$
\pause
\item
Estimation: typically, we need to approximate the CEF $\rightarrow$ use OLS!
\item
Common to approximate ATE with OLS estimates of
$$Y_i = \alpha + \beta D_i + \bm{\gamma}' \bm{X_i} + \epsilon_i$$
\pause
\item
This works well if (i) conditional unconfoundedness holds, and (ii) the CEF is approximately linear: $E[Y_i | D_i, \bm{X}_i] \approx \alpha + \beta D_i + \bm{\gamma}' \bm{X_i} $
\end{wideitemize}
\end{frame}
\begin{frame}
\includegraphics[width = 0.4\linewidth]{dk-results-table-reg2}
\end{frame}
\begin{frame}{Difference-in-differences I}
\centering
\includegraphics[width = 0.5\linewidth]{../Chapter6/hastings-event-study-w-labels}
\begin{wideitemize}
\item
Key identification assumption: parallel trends --- selection bias is constant over time (make sure you know the formal definition)
\pause
\item
Identification: under parallel trends (and no anticipation), $\tau_{ATT} = \underbrace{(\mu_{12} - \mu_{11})}_{\text{Change for treated pop}} - \underbrace{ (\mu_{02} - \mu_{01}) }_{\text{Change for control pop}}$
\pause
\item
Estimation: plug in sample means instead of population means!
\pause
\item
Estimation 2: can also estimate with OLS (make sure you know how to do this!)
\end{wideitemize}
\end{frame}
\begin{frame}{Difference-in-differences II }
\begin{wideitemize}
\item
It is common to assess plausibility of DiD assumption by looking at pre-treatment trends with an ``event-study''
\includegraphics[width = 0.5\linewidth]{../Chapter6/medicaid-eligibility}
\item
We gain confidence in the research design if (i) pre-trends close to 0, and (ii) can't draw a straight line through all the CIs (there is a break from trend!)
\pause
\item
Estimation of the event-study can be done via OLS (make sure you know how!)
\end{wideitemize}
\end{frame}
\begin{frame}{IV}
\includegraphics[width = 0.5\linewidth]{../Chapter7/ak-first-stage-basic}
\begin{wideitemize}
\item
In IV, we have an instrument that is as-good-as-randomly assigned and affects the outcome only through its effect on the treatment
\item
Four key identifying assumptions (make sure you understand them!):
\begin{wideitemize}
\item
Independence: instrument is as good as randomly assigned
\item
Exclusion: instrument affects outcome only through treatment
\item
Monotonicity: no defiers
\item
Relevance: instrument affects treatment status
\end{wideitemize}
\pause
\item
Under the four key assumptions, $\beta_{IV} = \frac{ E[Y_i | Z_i = 1] - E[Y_i | Z_i = 0] }{E[D_i | Z_i = 1] - E[D_i | Z_i = 0]}$ identifies a LATE (average treatment effect for compliers)
\end{wideitemize}
\end{frame}
\begin{frame}{IV - Estimation}
\includegraphics[width = 0.5\linewidth]{../Chapter7/ak-first-stage-basic}
\begin{wideitemize}
\item
Under the four key assumptions, $\beta_{IV} = \frac{ E[Y_i | Z_i = 1] - E[Y_i | Z_i = 0] }{E[D_i | Z_i = 1] - E[D_i | Z_i = 0]}$ identifies a LATE (average treatment effect for compliers)
\item
Estimation is done by plugging in sample analogs for reduced form and first-stage, then taking the ratio
\pause
\item
Estimation 2: can also be done by ``two-stage least squares'', which allows us to incorporate multiple instruments (make sure you know how)
\begin{wideitemize}
\item
Regress $D_i$ on instrument $Z_i$ (and controls)
\item
Regress $Y_i$ on predictions $\hat{D}_i$ (and controls)
\end{wideitemize}
\end{wideitemize}
\end{frame}
\begin{frame}{RDD}
\includegraphics[width = 0.5 \linewidth]{../Chapter8/bleemer-rf}
\begin{wideitemize}
\item
In RDD, we compare people just above/below a threshold that (partially) determines treatment status
\pause
\item
Identification: potential outcomes are continuous at the cutoff
\begin{itemize}
\item
Make sure you understand when this might fail!
\end{itemize}
\pause
\item
Estimation: estimate CEF at the cutoff using OLS or local linear regression
\begin{wideitemize}
\item
Note: I will not test you on the details of local linear regression
\end{wideitemize}
\end{wideitemize}
\end{frame}
\begin{frame}{Concluding thoughts I}
We've done a lot in one semester! \medskip
\begin{wideitemize}
\item
Learned about the challenges of estimating causal effects
\item
Developed statistical language to help us think about when/how we can learn about causal effects
\item
Learned several applicable ``identification strategies'' for learning about causal effects
\item
Developed tools for estimating and testing hypotheses about causal effects in finite samples (often using regression!)
\end{wideitemize}
\pause
\medskip
There's still a lot more to learn, if you're interested in taking more classes!
\begin{itemize}
\item
Non-parametrics, machine learning approaches, Bayesian econometrics, time series and forecasting, etc.
\end{itemize}
\end{frame}
\begin{frame}{Concluding thoughts II}
There are many different ways that I hope you can apply these tools going forward: \medskip
\begin{wideitemize}
\item
Do research that helps to improve policies or firm decisions, thereby increasing social welfare (or corporate profits - your choice!)
\begin{itemize}
\item
If you're interested in academic research, I encourage you to work as a research assistant for profs at Brown and/or write an honors thesis
\end{itemize}
\item
Better understand empirical evidence as you read articles in the newspaper, online, etc.
\item
Become an econometrician and help to develop tools for getter policy analysis in the future :-)
\end{wideitemize}
\end{frame}
\begin{frame}{Concluding thoughts III}
\begin{wideitemize}
\item
I encourage you to fill out the course evaluation/feedback form: \href{https://brown.evaluationkit.com }{\underline{https://brown.evaluationkit.com}}
\item
Course feedback will be used both for evaluation purposes and for trying to improve the course!
\item
This is my third time teaching this course, so any comments on what worked or could have been done better are much appreaciated. Thanks!
\end{wideitemize}
\end{frame}
\begin{frame}
\centering
\includegraphics[width = 0.9 \linewidth]{poppy-good-luck}
\end{frame}
\end{document}