forked from SeanNaren/deepspeech.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
425 lines (378 loc) · 20.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import argparse
import errno
import json
import os
import time
import torch.distributed as dist
import torch.utils.data.distributed
from torch.autograd import Variable
from tqdm import tqdm
from warpctc_pytorch import CTCLoss
from data.data_loader import AudioDataLoader, SpectrogramDataset, BucketingSampler, DistributedBucketingSampler
from data.distributed import DistributedDataParallel
from decoder import GreedyDecoder
from model import DeepSpeech, supported_rnns
parser = argparse.ArgumentParser(description='DeepSpeech training')
parser.add_argument('--train-manifest', metavar='DIR',
help='path to train manifest csv', default='data/train_manifest.csv')
parser.add_argument('--val-manifest', metavar='DIR',
help='path to validation manifest csv', default='data/val_manifest.csv')
parser.add_argument('--sample-rate', default=16000, type=int, help='Sample rate')
parser.add_argument('--batch-size', default=20, type=int, help='Batch size for training')
parser.add_argument('--num-workers', default=4, type=int, help='Number of workers used in data-loading')
parser.add_argument('--labels-path', default='labels.json', help='Contains all characters for transcription')
parser.add_argument('--window-size', default=.02, type=float, help='Window size for spectrogram in seconds')
parser.add_argument('--window-stride', default=.01, type=float, help='Window stride for spectrogram in seconds')
parser.add_argument('--window', default='hamming', help='Window type for spectrogram generation')
parser.add_argument('--hidden-size', default=800, type=int, help='Hidden size of RNNs')
parser.add_argument('--hidden-layers', default=5, type=int, help='Number of RNN layers')
parser.add_argument('--rnn-type', default='gru', help='Type of the RNN. rnn|gru|lstm are supported')
parser.add_argument('--epochs', default=70, type=int, help='Number of training epochs')
parser.add_argument('--cuda', dest='cuda', action='store_true', help='Use cuda to train model')
parser.add_argument('--lr', '--learning-rate', default=3e-4, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--max-norm', default=400, type=int, help='Norm cutoff to prevent explosion of gradients')
parser.add_argument('--learning-anneal', default=1.1, type=float, help='Annealing applied to learning rate every epoch')
parser.add_argument('--silent', dest='silent', action='store_true', help='Turn off progress tracking per iteration')
parser.add_argument('--checkpoint', dest='checkpoint', action='store_true', help='Enables checkpoint saving of model')
parser.add_argument('--checkpoint-per-batch', default=0, type=int, help='Save checkpoint per batch. 0 means never save')
parser.add_argument('--visdom', dest='visdom', action='store_true', help='Turn on visdom graphing')
parser.add_argument('--tensorboard', dest='tensorboard', action='store_true', help='Turn on tensorboard graphing')
parser.add_argument('--log-dir', default='visualize/deepspeech_final', help='Location of tensorboard log')
parser.add_argument('--log-params', dest='log_params', action='store_true', help='Log parameter values and gradients')
parser.add_argument('--id', default='Deepspeech training', help='Identifier for visdom/tensorboard run')
parser.add_argument('--save-folder', default='models/', help='Location to save epoch models')
parser.add_argument('--model-path', default='models/deepspeech_final.pth',
help='Location to save best validation model')
parser.add_argument('--continue-from', default='', help='Continue from checkpoint model')
parser.add_argument('--finetune', dest='finetune', action='store_true',
help='Finetune the model from checkpoint "continue_from"')
parser.add_argument('--augment', dest='augment', action='store_true', help='Use random tempo and gain perturbations.')
parser.add_argument('--noise-dir', default=None,
help='Directory to inject noise into audio. If default, noise Inject not added')
parser.add_argument('--noise-prob', default=0.4, help='Probability of noise being added per sample')
parser.add_argument('--noise-min', default=0.0,
help='Minimum noise level to sample from. (1.0 means all noise, not original signal)', type=float)
parser.add_argument('--noise-max', default=0.5,
help='Maximum noise levels to sample from. Maximum 1.0', type=float)
parser.add_argument('--no-shuffle', dest='no_shuffle', action='store_true',
help='Turn off shuffling and sample from dataset based on sequence length (smallest to largest)')
parser.add_argument('--no-sortaGrad', dest='no_sorta_grad', action='store_true',
help='Turn off ordering of dataset on sequence length for the first epoch.')
parser.add_argument('--no-bidirectional', dest='bidirectional', action='store_false', default=True,
help='Turn off bi-directional RNNs, introduces lookahead convolution')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:1550', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='gloo', type=str, help='distributed backend')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--rank', default=0, type=int,
help='The rank of this process')
parser.add_argument('--gpu-rank', default=None,
help='If using distributed parallel for multi-gpu, sets the GPU for the process')
torch.manual_seed(123456)
torch.cuda.manual_seed_all(123456)
def to_np(x):
return x.data.cpu().numpy()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
args = parser.parse_args()
args.distributed = args.world_size > 1
main_proc = True
if args.distributed:
if args.gpu_rank:
torch.cuda.set_device(int(args.gpu_rank))
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
main_proc = args.rank == 0 # Only the first proc should save models
save_folder = args.save_folder
loss_results, cer_results, wer_results = torch.Tensor(args.epochs), torch.Tensor(args.epochs), torch.Tensor(
args.epochs)
best_wer = None
if args.visdom and main_proc:
from visdom import Visdom
viz = Visdom()
opts = dict(title=args.id, ylabel='', xlabel='Epoch', legend=['Loss', 'WER', 'CER'])
viz_window = None
epochs = torch.arange(1, args.epochs + 1)
if args.tensorboard and main_proc:
try:
os.makedirs(args.log_dir)
except OSError as e:
if e.errno == errno.EEXIST:
print('Tensorboard log directory already exists.')
for file in os.listdir(args.log_dir):
file_path = os.path.join(args.log_dir, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception:
raise
else:
raise
from tensorboardX import SummaryWriter
tensorboard_writer = SummaryWriter(args.log_dir)
try:
os.makedirs(save_folder)
except OSError as e:
if e.errno == errno.EEXIST:
print('Model Save directory already exists.')
else:
raise
criterion = CTCLoss()
avg_loss, start_epoch, start_iter = 0, 0, 0
if args.continue_from: # Starting from previous model
print("Loading checkpoint model %s" % args.continue_from)
package = torch.load(args.continue_from, map_location=lambda storage, loc: storage)
model = DeepSpeech.load_model_package(package)
labels = DeepSpeech.get_labels(model)
audio_conf = DeepSpeech.get_audio_conf(model)
parameters = model.parameters()
optimizer = torch.optim.SGD(parameters, lr=args.lr,
momentum=args.momentum, nesterov=True)
if not args.finetune: # Don't want to restart training
optimizer.load_state_dict(package['optim_dict'])
start_epoch = int(package.get('epoch', 1)) - 1 # Index start at 0 for training
start_iter = package.get('iteration', None)
if start_iter is None:
start_epoch += 1 # We saved model after epoch finished, start at the next epoch.
start_iter = 0
else:
start_iter += 1
avg_loss = int(package.get('avg_loss', 0))
loss_results, cer_results, wer_results = package['loss_results'], package[
'cer_results'], package['wer_results']
if main_proc and args.visdom and \
package[
'loss_results'] is not None and start_epoch > 0: # Add previous scores to visdom graph
x_axis = epochs[0:start_epoch]
y_axis = torch.stack(
(loss_results[0:start_epoch], wer_results[0:start_epoch], cer_results[0:start_epoch]),
dim=1)
viz_window = viz.line(
X=x_axis,
Y=y_axis,
opts=opts,
)
if main_proc and args.tensorboard and \
package[
'loss_results'] is not None and start_epoch > 0: # Previous scores to tensorboard logs
for i in range(start_epoch):
values = {
'Avg Train Loss': loss_results[i],
'Avg WER': wer_results[i],
'Avg CER': cer_results[i]
}
tensorboard_writer.add_scalars(args.id, values, i + 1)
else:
with open(args.labels_path) as label_file:
labels = str(''.join(json.load(label_file)))
audio_conf = dict(sample_rate=args.sample_rate,
window_size=args.window_size,
window_stride=args.window_stride,
window=args.window,
noise_dir=args.noise_dir,
noise_prob=args.noise_prob,
noise_levels=(args.noise_min, args.noise_max))
rnn_type = args.rnn_type.lower()
assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"
model = DeepSpeech(rnn_hidden_size=args.hidden_size,
nb_layers=args.hidden_layers,
labels=labels,
rnn_type=supported_rnns[rnn_type],
audio_conf=audio_conf,
bidirectional=args.bidirectional)
parameters = model.parameters()
optimizer = torch.optim.SGD(parameters, lr=args.lr,
momentum=args.momentum, nesterov=True)
decoder = GreedyDecoder(labels)
train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.train_manifest, labels=labels,
normalize=True, augment=args.augment)
test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels,
normalize=True, augment=False)
if not args.distributed:
train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size)
else:
train_sampler = DistributedBucketingSampler(train_dataset, batch_size=args.batch_size,
num_replicas=args.world_size, rank=args.rank)
train_loader = AudioDataLoader(train_dataset,
num_workers=args.num_workers, batch_sampler=train_sampler)
test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size,
num_workers=args.num_workers)
if (not args.no_shuffle and start_epoch != 0) or args.no_sorta_grad:
print("Shuffling batches for the following epochs")
train_sampler.shuffle(start_epoch)
if args.cuda and not args.distributed:
model = torch.nn.DataParallel(model).cuda()
elif args.cuda and args.distributed:
model.cuda()
model = DistributedDataParallel(model)
print(model)
print("Number of parameters: %d" % DeepSpeech.get_param_size(model))
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
for epoch in range(start_epoch, args.epochs):
model.train()
end = time.time()
start_epoch_time = time.time()
for i, (data) in enumerate(train_loader, start=start_iter):
if i == len(train_sampler):
break
inputs, targets, input_percentages, target_sizes = data
# measure data loading time
data_time.update(time.time() - end)
inputs = Variable(inputs, requires_grad=False)
target_sizes = Variable(target_sizes, requires_grad=False)
targets = Variable(targets, requires_grad=False)
if args.cuda:
inputs = inputs.cuda()
out = model(inputs)
out = out.transpose(0, 1) # TxNxH
seq_length = out.size(0)
sizes = Variable(input_percentages.mul_(int(seq_length)).int(), requires_grad=False)
loss = criterion(out, targets, sizes, target_sizes)
loss = loss / inputs.size(0) # average the loss by minibatch
loss_sum = loss.data.sum()
inf = float("inf")
if loss_sum == inf or loss_sum == -inf:
print("WARNING: received an inf loss, setting loss value to 0")
loss_value = 0
else:
loss_value = loss.data[0]
avg_loss += loss_value
losses.update(loss_value, inputs.size(0))
# compute gradient
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), args.max_norm)
# SGD step
optimizer.step()
if args.cuda:
torch.cuda.synchronize()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if not args.silent:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
(epoch + 1), (i + 1), len(train_sampler), batch_time=batch_time,
data_time=data_time, loss=losses))
if args.checkpoint_per_batch > 0 and i > 0 and (i + 1) % args.checkpoint_per_batch == 0 and main_proc:
file_path = '%s/deepspeech_checkpoint_epoch_%d_iter_%d.pth.tar' % (save_folder, epoch + 1, i + 1)
print("Saving checkpoint model to %s" % file_path)
torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, iteration=i,
loss_results=loss_results,
wer_results=wer_results, cer_results=cer_results, avg_loss=avg_loss),
file_path)
del loss
del out
avg_loss /= len(train_sampler)
epoch_time = time.time() - start_epoch_time
print('Training Summary Epoch: [{0}]\t'
'Time taken (s): {epoch_time:.0f}\t'
'Average Loss {loss:.3f}\t'.format(
epoch + 1, epoch_time=epoch_time, loss=avg_loss))
start_iter = 0 # Reset start iteration for next epoch
total_cer, total_wer = 0, 0
model.eval()
for i, (data) in tqdm(enumerate(test_loader), total=len(test_loader)):
inputs, targets, input_percentages, target_sizes = data
inputs = Variable(inputs, volatile=True)
# unflatten targets
split_targets = []
offset = 0
for size in target_sizes:
split_targets.append(targets[offset:offset + size])
offset += size
if args.cuda:
inputs = inputs.cuda()
out = model(inputs) # NxTxH
seq_length = out.size(1)
sizes = input_percentages.mul_(int(seq_length)).int()
decoded_output, _ = decoder.decode(out.data, sizes)
target_strings = decoder.convert_to_strings(split_targets)
wer, cer = 0, 0
for x in range(len(target_strings)):
transcript, reference = decoded_output[x][0], target_strings[x][0]
wer += decoder.wer(transcript, reference) / float(len(reference.split()))
cer += decoder.cer(transcript, reference) / float(len(reference))
total_cer += cer
total_wer += wer
if args.cuda:
torch.cuda.synchronize()
del out
wer = total_wer / len(test_loader.dataset)
cer = total_cer / len(test_loader.dataset)
wer *= 100
cer *= 100
loss_results[epoch] = avg_loss
wer_results[epoch] = wer
cer_results[epoch] = cer
print('Validation Summary Epoch: [{0}]\t'
'Average WER {wer:.3f}\t'
'Average CER {cer:.3f}\t'.format(
epoch + 1, wer=wer, cer=cer))
if args.visdom and main_proc:
x_axis = epochs[0:epoch + 1]
y_axis = torch.stack((loss_results[0:epoch + 1], wer_results[0:epoch + 1], cer_results[0:epoch + 1]), dim=1)
if viz_window is None:
viz_window = viz.line(
X=x_axis,
Y=y_axis,
opts=opts,
)
else:
viz.line(
X=x_axis.unsqueeze(0).expand(y_axis.size(1), x_axis.size(0)).transpose(0, 1), # Visdom fix
Y=y_axis,
win=viz_window,
update='replace',
)
if args.tensorboard and main_proc:
values = {
'Avg Train Loss': avg_loss,
'Avg WER': wer,
'Avg CER': cer
}
tensorboard_writer.add_scalars(args.id, values, epoch + 1)
if args.log_params:
for tag, value in model.named_parameters():
tag = tag.replace('.', '/')
tensorboard_writer.add_histogram(tag, to_np(value), epoch + 1)
tensorboard_writer.add_histogram(tag + '/grad', to_np(value.grad), epoch + 1)
if args.checkpoint and main_proc:
file_path = '%s/deepspeech_%d.pth.tar' % (save_folder, epoch + 1)
torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
wer_results=wer_results, cer_results=cer_results),
file_path)
# anneal lr
optim_state = optimizer.state_dict()
optim_state['param_groups'][0]['lr'] = optim_state['param_groups'][0]['lr'] / args.learning_anneal
optimizer.load_state_dict(optim_state)
print('Learning rate annealed to: {lr:.6f}'.format(lr=optim_state['param_groups'][0]['lr']))
if (best_wer is None or best_wer > wer) and main_proc:
print("Found better validated model, saving to %s" % args.model_path)
torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
wer_results=wer_results, cer_results=cer_results)
, args.model_path)
best_wer = wer
avg_loss = 0
if not args.no_shuffle:
print("Shuffling batches...")
train_sampler.shuffle(epoch)