-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample_Andreas_Krause.py
57 lines (45 loc) · 1.67 KB
/
example_Andreas_Krause.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from typing import Set, TypeVar
from submodmax.abstract_optimizer import AbstractSubmodularFunction, AbstractOptimizer
from submodmax.randomized_double_greedy_search import RandomizedDoubleGreedySearch
E = TypeVar('E')
class AndreasKrauseExampleObjectiveFunction(AbstractSubmodularFunction):
def evaluate(self, input_set: Set[int]) -> float:
if input_set == set():
return 0
elif input_set == {1}:
return -1
elif input_set == {2}:
return 2
elif input_set == {1, 2}:
return 0
else:
raise Exception(f"The input set was not expected: {input_set}")
def run_example():
"""
The example from the tutorial slides at www.submodularity.org
Originally implemented by Andreas Krause ([email protected]) in his SFO toolbox in Matlab.
The function:
| input_set | output |
|-----------|--------|
| {} | 0 |
| {1} | -1 |
| {2} | 2 |
| {1, 2} | 0 |
The ground set: { 1, 2 }
"""
ground_set: Set[int] = {1, 2}
submodular_objective_function = AndreasKrauseExampleObjectiveFunction()
optimizer: AbstractOptimizer = RandomizedDoubleGreedySearch(
objective_function=submodular_objective_function,
ground_set=ground_set,
debug=False
)
local_optimum: Set[int] = optimizer.optimize()
true_optimum: Set[int] = {2}
print(local_optimum)
if true_optimum == local_optimum:
print(f"Found correct local optimum: {local_optimum}")
else:
print(f"Found {local_optimum}, but should be {true_optimum}")
if __name__ == '__main__':
run_example()