forked from matpalm/bnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
executable file
·164 lines (142 loc) · 7.91 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python3
from PIL import Image, ImageDraw, ImageEnhance
from functools import partial
from label_db import LabelDB
import json
import numpy as np
import os
import random
import tensorflow as tf
import util as u
def img_xys_iterator(image_dir, label_dir, batch_size, patch_width_height, distort_rgb,
flip_left_right, random_rotation, repeat, width, height,
label_rescale=0.5):
# return dataset of (image, xys_bitmap) for training
# give super explicit exception re: setting patch_width_height and width, height
width_height_set = False
if width is not None or height is not None:
if width is None or height is None:
raise Exception("when setting --width or --height must set both")
width_height_set = True
patch_set = patch_width_height is not None
if patch_set and width_height_set:
raise Exception("need to set either --patch-width-height or --width and --height, not both")
if not (patch_set or width_height_set):
raise Exception("need to set one of either --patch-width-height or both --width and --height")
# materialise list of rgb filenames and corresponding numpy bitmaps
rgb_filenames = [] # (H, W, 3) jpgs
bitmap_filenames = [] # (H/2, W/2, 1) pngs
for fname in os.listdir(image_dir):
rgb_filename = "%s/%s" % (image_dir, fname)
rgb_filenames.append(rgb_filename)
bitmap_filename = "%s/%s" % (label_dir, fname.replace(".jpg", ".png"))
if not os.path.isfile(bitmap_filename):
raise Exception("label bitmap img [%s] doesn't exist for training example [%s]. did you run materialise_label_db.py?"
% (bitmap_filename, rgb_filename))
bitmap_filenames.append(bitmap_filename)
def decode_images(rgb_filename, bitmap_filename):
rgb = tf.image.decode_image(tf.read_file(rgb_filename))
rgb = tf.cast(rgb, tf.float32)
rgb = (rgb / 127.5) - 1.0 # -1.0 -> 1.0
bitmap = tf.image.decode_image(tf.read_file(bitmap_filename))
bitmap = tf.cast(bitmap, tf.float32)
bitmap /= 256 # 0 -> 1
return rgb, bitmap
def random_crop(rgb, bitmap):
# we want to use the same crop for both RGB input and bitmap labels
patch_width = patch_height = patch_width_height
height, width = tf.shape(rgb)[0], tf.shape(rgb)[1]
offset_height = tf.random_uniform([], 0, height-patch_height, dtype=tf.int32)
offset_width = tf.random_uniform([], 0, width-patch_width, dtype=tf.int32)
rgb = tf.image.crop_to_bounding_box(rgb, offset_height, offset_width, patch_height, patch_width)
rgb = tf.reshape(rgb, (patch_height, patch_width, 3))
# TODO: remove this cast uglyness :/
bitmap = tf.image.crop_to_bounding_box(bitmap,
tf.cast(tf.cast(offset_height, tf.float32) * label_rescale, tf.int32),
tf.cast(tf.cast(offset_width, tf.float32) * label_rescale, tf.int32),
int(patch_height * label_rescale), int(patch_width * label_rescale))
bitmap = tf.reshape(bitmap, (int(patch_height * label_rescale), int(patch_width * label_rescale), 1))
return rgb, bitmap
def augment(rgb, bitmap):
if flip_left_right:
random = tf.random_uniform([], 0, 1, dtype=tf.float32)
rgb, bitmap = tf.cond(random < 0.5,
lambda: (rgb, bitmap),
lambda: (tf.image.flip_left_right(rgb),
tf.image.flip_left_right(bitmap)))
if distort_rgb:
rgb = tf.image.random_brightness(rgb, 0.1)
rgb = tf.image.random_contrast(rgb, 0.9, 1.1)
# rgb = tf.image.per_image_standardization(rgb) # works great, but how to have it done for predict?
rgb = tf.clip_by_value(rgb, clip_value_min=-1.0, clip_value_max=1.0)
if random_rotation:
# we want to use the same crop for both RGB input and bitmap labels
random_rotation_angle = tf.random_uniform([], -0.4, 0.4, dtype=tf.float32)
rgb, bitmap = (tf.contrib.image.rotate(rgb, random_rotation_angle, 'BILINEAR'),
tf.contrib.image.rotate(bitmap, random_rotation_angle, 'BILINEAR'))
return rgb, bitmap
def set_explicit_size(rgb, bitmap):
if height is None or width is None:
raise Exception(">set_explicit_size requires explicit height/width set when not patch sampling")
return (tf.reshape(rgb, (height, width, 3)),
tf.reshape(bitmap, (height // 2, width // 2, 1)))
dataset = tf.data.Dataset.from_tensor_slices((tf.constant(rgb_filenames),
tf.constant(bitmap_filenames)))
dataset = dataset.map(decode_images, num_parallel_calls=8)
if repeat:
if len(rgb_filenames) < 1000:
dataset = dataset.cache()
print("len(rgb_filenames)", len(rgb_filenames), ("CACHE" if len(rgb_filenames) < 1000 else "NO CACHE"))
dataset = dataset.shuffle(1000).repeat()
if patch_width_height is not None:
dataset = dataset.map(random_crop, num_parallel_calls=8)
else:
# this is clumsy but required for rotation as well as current debugging.
# TODO: refactor away from requiring this (and, by implication, --height, --width)
dataset = dataset.map(set_explicit_size, num_parallel_calls=8)
if flip_left_right or distort_rgb or random_rotation:
dataset = dataset.map(augment, num_parallel_calls=8)
# NOTE: keras.fit wants the iterator directly (not .get_next())
return dataset.batch(batch_size).prefetch(tf.contrib.data.AUTOTUNE)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--image-dir', type=str, default='sample_data/training/',
help='location of RGB input images')
parser.add_argument('--label-dir', type=str, default='sample_data/labels/',
help='location of corresponding L label files. (note: we assume for'
'each image-dir image there is a label-dir image)')
parser.add_argument('--batch-size', type=int, default=4)
parser.add_argument('--patch-width-height', type=int, default=None,
help="what size square patches to sample. None => no patch, i.e. use full res image"
" (in which case --width & --height are required)")
parser.add_argument('--label-rescale', type=float, default=0.5,
help='relative scale of label bitmap compared to input image')
parser.add_argument('--distort', action='store_true')
parser.add_argument('--rotate', action='store_true')
parser.add_argument('--width', type=int, default=768,
help='input image width. required if --patch-width-height not set.')
parser.add_argument('--height', type=int, default=1024,
help='input image height. required if --patch-width-height not set.')
opts = parser.parse_args()
print(opts)
from PIL import Image, ImageDraw
sess = tf.Session()
imgs_xyss = img_xys_iterator(image_dir=opts.image_dir,
label_dir=opts.label_dir,
batch_size=opts.batch_size,
patch_width_height=opts.patch_width_height,
distort_rgb=opts.distort,
flip_left_right=opts.distort,
random_rotation=opts.rotate,
repeat=True,
width=None if opts.patch_width_height else opts.width,
height=None if opts.patch_width_height else opts.height,
label_rescale=opts.label_rescale)
imgs, xyss = imgs_xyss.make_one_shot_iterator().get_next()
for b in range(3):
img_batch, xys_batch = sess.run([imgs, xyss])
for i, (img, xys) in enumerate(zip(img_batch, xys_batch)):
fname = "test_%03d_%03d.png" % (b, i)
print("batch", b, "element", i, "fname", fname)
u.side_by_side(rgb=img, bitmap=xys).save(fname)