forked from matpalm/bnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdump_bee_crops.py
executable file
·54 lines (50 loc) · 1.79 KB
/
dump_bee_crops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python3
from PIL import Image, ImageDraw
import label_db
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--width', type=int, default=768, help='input image width')
parser.add_argument('--height', type=int, default=1024, help='input image height')
opts = parser.parse_args()
HW = 50//2 # crops are 50x50
def valid(labels, cx, cy):
# is idxth item in labels "valid"? where "valid" => bounding
# box within image and no other bee in bounding box.
x1, y1 = cx-HW, cy-HW
if x1 < 0 or y1 < 0:
# either left or top margin out of bounds => invalid
return False
x2, y2 = cx+HW, cy+HW
if x2 > opts.width or y2 > opts.height:
# either right or bottom margin out of bounds => invalid
return False
for ox, oy in labels:
if ox == cx and oy == cy:
# this 'other' bee is the one being checked => ignore
continue
if x1 < ox and ox < x2 and y1 < oy and oy < y2:
# other bee inside bounding box => invalid
return False
return True
#canvas = Image.new('RGB', (HW*20, HW*20), (0,0,0))
db = label_db.LabelDB(label_db_file='label.201802_sample.db')
for img_fname in list(db.imgs()):
out_idx = 0
img = None
labels = db.get_labels(img_fname)
for cx, cy in labels:
print("check", img_fname, cx, cy)
if not valid(labels, cx, cy):
continue
if img is None:
img_dname = img_fname[:8]
img = Image.open("images/%s/%s" % (img_dname, img_fname))
crop = img.crop((cx-HW, cy-HW, cx+HW, cy+HW))
# px, py = (i%20)*HW, (i//20)*HW
# print("!", i, px, py)
# canvas.paste(crop, (px, py))
crop.save("images/single_bees/%s_%03d.png" % (img_fname.replace(".jpg", ""), out_idx))
out_idx += 1
# if i > (20*20):
# canvas.save("foo.png")
# exit()