forked from matpalm/bnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·66 lines (49 loc) · 2.27 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python3
# given a directory of images and labels output overall P/R/F1 for entire set
from PIL import Image
from label_db import LabelDB
from scipy.special import expit
import model as m
import numpy as np
import os
import util as u
def pr_stats(run, image_dir, label_db, connected_components_threshold):
# TODO: a bunch of this can go back into one off init in a class
_train_opts, model = m.restore_model(run)
label_db = LabelDB(label_db_file=label_db)
set_comparison = u.SetComparison()
# use 4 images for debug
debug_imgs = []
for idx, filename in enumerate(sorted(os.listdir(image_dir))):
# load next image
# TODO: this block used in various places, refactor
img = np.array(Image.open(image_dir+"/"+filename)) # uint8 0->255 (H, W)
img = img.astype(np.float32)
img = (img / 127.5) - 1.0 # -1.0 -> 1.0 # see data.py
# run through model
prediction = expit(model.predict(np.expand_dims(img, 0))[0])
if len(debug_imgs) < 4:
debug_imgs.append(u.side_by_side(rgb=img, bitmap=prediction))
# calc [(x,y), ...] centroids
predicted_centroids = u.centroids_of_connected_components(prediction,
rescale=2.0,
threshold=connected_components_threshold)
# compare to true labels
true_centroids = label_db.get_labels(filename)
true_centroids = [(y, x) for (x, y) in true_centroids] # sigh...
tp, fn, fp = set_comparison.compare_sets(true_centroids, predicted_centroids)
precision, recall, f1 = set_comparison.precision_recall_f1()
return {"debug_imgs": debug_imgs,
"precision": precision,
"recall": recall,
"f1": f1}
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--run', type=str, required=True, help='model')
parser.add_argument('--image-dir', type=str, required=True)
parser.add_argument('--label-db', type=str, required=True)
parser.add_argument('--connected-components-threshold', type=float, default=0.05)
opts = parser.parse_args()
print(opts)
print(pr_stats(opts.run, opts.image_dir, opts.label_db, opts.connected_components_threshold))