open import Agda.Primitive using (lzero)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Bool using (Bool; true; false; _∨_)
open import Data.List using (List; []; _∷_; length; _++_)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.Maybe
open import Data.Nat using (ℕ; zero; suc; _+_; _<_; _≤_; z≤n; s≤s; _<?_){- ; _≤′_; ≤′-refl; ≤′-step; _<′_)-}
open import Data.Nat.Properties
using (m≤m+n; m≤n+m; ≤-step; ≤-pred; n≤1+n; 1+n≰n; ≤-refl; +-comm; +-assoc;
+-mono-≤; ≤-reflexive; ≤∧≢⇒<) {-≤⇒≤′; ≤′⇒≤; ≤-trans)-}
open Data.Nat.Properties.≤-Reasoning
using (_≤⟨_⟩_)
renaming (begin_ to begin≤_; _∎ to _QED)
open import Data.Product using (_×_; Σ; Σ-syntax; ∃; ∃-syntax; proj₁; proj₂)
renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Unit using (⊤; tt)
open import Data.Vec using (Vec; []; _∷_)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Binary.PropositionalEquality
using (_≡_; _≢_; refl; sym; inspect; [_]; cong; cong₂)
open Relation.Binary.PropositionalEquality.≡-Reasoning
using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
open import FiniteSet
module FirstOrderTerms
(Op : Set)
(op-eq? : (x : Op) → (y : Op) → Dec (x ≡ y))
(arity : Op → ℕ) where
Var = ℕ
_≟_ : (x : ℕ) → (y : ℕ) → Dec (x ≡ y)
zero ≟ zero = yes refl
zero ≟ suc y = no (λ ())
suc x ≟ zero = no (λ ())
suc x ≟ suc y
with x ≟ y
... | yes refl = yes refl
... | no xy = no λ {refl → xy refl}
data Term : Set where
`_ : Var → Term
_⦅_⦆ : (op : Op) → Vec Term (arity op) → Term
Substitution : Set
Substitution = List (Term × Term)
[_::=_]_ : Var → Term → ∀{n} → Vec Term n → Vec Term n
[_:=_]_ : Var → Term → Term → Term
[ x := M ] (` y)
with x ≟ y
... | yes xy = M
... | no xy = ` y
[ x := M ] (op ⦅ Ns ⦆) = op ⦅ [ x ::= M ] Ns ⦆
[ x ::= M ] [] = []
[ x ::= M ] (N ∷ Ns) = [ x := M ] N ∷ [ x ::= M ] Ns
[_/_]_ : Term → Var → Substitution → Substitution
[ M / x ] [] = []
[ M / x ] (⟨ L , N ⟩ ∷ eqs) = ⟨ [ x := M ] L , [ x := M ] N ⟩ ∷ ([ M / x ] eqs)
lookup : Substitution → Var → Maybe Term
lookup [] x = nothing
lookup (⟨ ` y , M ⟩ ∷ eqs) x
with x ≟ y
... | yes xy = just M
... | no xy = lookup eqs x
lookup (⟨ op ⦅ Ms ⦆ , snd ⟩ ∷ eqs) x = lookup eqs x
subst-vec : Substitution → ∀{n} → Vec Term n → Vec Term n
subst : Substitution → Term → Term
subst σ (` x)
with lookup σ x
... | nothing = ` x
... | just M = M
subst σ (op ⦅ Ms ⦆) = op ⦅ subst-vec σ Ms ⦆
subst-vec σ {zero} Ms = []
subst-vec σ {suc n} (M ∷ Ms) = subst σ M ∷ subst-vec σ Ms
sub-sub : Substitution → Substitution → Substitution
sub-sub θ [] = []
sub-sub θ (⟨ L , M ⟩ ∷ σ) = ⟨ L , subst θ M ⟩ ∷ sub-sub θ σ
_∘_ : Substitution → Substitution → Substitution
τ ∘ σ = sub-sub τ σ ++ τ
Definition of the variables in a term.
vars-vec : ∀{n} → Vec Term n → FiniteSet
vars : Term → FiniteSet
vars (` x) = ⁅ x ⁆
vars (op ⦅ Ms ⦆) = vars-vec Ms
vars-vec {zero} Ms = ∅
vars-vec {suc n} (M ∷ Ms) = vars M ∪ vars-vec Ms
vars-eqs : Substitution → FiniteSet
vars-eqs [] = ∅
vars-eqs (⟨ L , M ⟩ ∷ eqs) = vars L ∪ vars M ∪ vars-eqs eqs
Decision procedure for checking whether a variable occurs in a term.
occurs? : (x : Var) → (M : Term) → Dec (x ∈ vars M)
occurs-vec? : (x : Var) → ∀{n} → (Ms : Vec Term n) → Dec (x ∈ vars-vec Ms)
occurs? x (` y)
with x ≟ y
... | yes refl = yes (x∈⁅x⁆ x)
... | no xy = no (x∉⁅y⁆ x y xy)
occurs? x (op ⦅ Ms ⦆) = occurs-vec? x Ms
occurs-vec? x {zero} [] = no (∉∅ {x})
occurs-vec? x {suc n} (M ∷ Ms)
with occurs? x M
... | yes x∈M = yes ((p⊆p∪q _ _) {x} x∈M)
... | no x∉M
with occurs-vec? x Ms
... | yes x∈Ms = yes ((q⊆p∪q _ _) {x} x∈Ms)
... | no x∉Ms = no G
where
G : ¬ x ∈ vars M ∪ vars-vec Ms
G x∈M∪Ms
with ∈p∪q→∈p⊎∈q x∈M∪Ms
... | inj₁ x∈M = x∉M x∈M
... | inj₂ x∈Ms = x∉Ms x∈Ms
The domain of a list of equations are the variables on the left-hand sides.
dom : Substitution → FiniteSet
dom [] = ∅
dom (⟨ M , L ⟩ ∷ eqs) = vars M ∪ dom eqs
Definition of idempotent substitutions.
data IdemSubst : Substitution → Set where
empty : IdemSubst []
insert : ∀{eqs}{x}{M}
→ x ∉ vars M → x ∉ vars-eqs eqs
→ vars M ∩ dom eqs ⊆ ∅ → IdemSubst eqs
→ IdemSubst (⟨ ` x , M ⟩ ∷ eqs)
op≡-inversion : ∀{op op' Ms Ms'} → op ⦅ Ms ⦆ ≡ op' ⦅ Ms' ⦆ → op ≡ op'
op≡-inversion refl = refl
Ms≡-inversion : ∀{op Ms Ms'} → op ⦅ Ms ⦆ ≡ op ⦅ Ms' ⦆ → Ms ≡ Ms'
Ms≡-inversion refl = refl
∷≡-inversion : ∀{n}{x y : Term}{xs ys : Vec Term n}
→ _≡_ {a = Agda.Primitive.lzero}{A = Vec Term (suc n)} (x ∷ xs) (y ∷ ys)
→ x ≡ y × xs ≡ ys
∷≡-inversion refl = ⟨ refl , refl ⟩
The empty substitution is the identity function.
subst-empty : ∀ M → subst [] M ≡ M
subst-vec-empty : ∀ {n} (Ms : Vec Term n) → subst-vec [] Ms ≡ Ms
subst-empty (` x) = refl
subst-empty (op ⦅ Ms ⦆)
rewrite subst-vec-empty Ms = refl
subst-vec-empty {.0} [] = refl
subst-vec-empty {.(suc _)} (M ∷ Ms)
rewrite subst-empty M
| subst-vec-empty Ms = refl
When the variable matches the variable in the first pair, the result of substitution is the associated term.
subst-var-eq : ∀{x}{M}{σ}
→ subst (⟨ ` x , M ⟩ ∷ σ) (` x) ≡ M
subst-var-eq {x}{M}{σ}
with x ≟ x
... | yes refl = refl
... | no xx = ⊥-elim (xx refl)
When the variable does not match the variable in the first pair, the result is the rest of the substitution applied to the variable.
subst-var-neq : ∀{x}{y}{M}{σ}
→ x ≢ y
→ subst (⟨ ` x , M ⟩ ∷ σ) (` y) ≡ subst σ (` y)
subst-var-neq {x}{y}{M}{σ} x≢y
with y ≟ x
... | yes refl = ⊥-elim (x≢y refl)
... | no yx = refl
Single substitution is the identity when the variable being substituted does not occur in the term.
no-vars→subst-id : ∀{N x M}
→ ¬ x ∈ vars N
→ [ x := M ] N ≡ N
no-vars→subst-vec-id : ∀{n}{Ns : Vec Term n} {x M}
→ ¬ x ∈ vars-vec Ns
→ [ x ::= M ] Ns ≡ Ns
no-vars→subst-id {` y}{x} ¬x∈M
with x ≟ y
... | yes refl = ⊥-elim (¬x∈M (x∈⁅x⁆ y))
... | no xy = refl
no-vars→subst-id {op ⦅ Ns ⦆} ¬x∈M =
cong (λ □ → op ⦅ □ ⦆) (no-vars→subst-vec-id ¬x∈M)
no-vars→subst-vec-id {zero} {[]} ¬x∈M = refl
no-vars→subst-vec-id {suc n} {N ∷ Ns} {x}{M} ¬x∈M
with occurs? x N | occurs-vec? x Ns
... | yes x∈N | _ =
⊥-elim (¬x∈M (p⊆p∪q (vars N) (vars-vec Ns) x∈N))
... | no x∉N | yes x∈Ns = ⊥-elim (¬x∈M ((q⊆p∪q (vars N) (vars-vec Ns) x∈Ns)))
... | no x∉N | no x∉Ns
rewrite no-vars→subst-id {N}{x}{M} x∉N
| no-vars→subst-vec-id {n}{Ns}{x}{M} x∉Ns = refl
Simultaneous substitution is the identity when the domain of the substitution has not variables in common with the term. First we prove two lemmas to help with the variable case.
x∉domσ→no-lookup : ∀{σ}{x}
→ x ∉ dom σ
→ lookup σ x ≡ nothing
x∉domσ→no-lookup {[]} {x} x∉σ = refl
x∉domσ→no-lookup {⟨ ` y , M ⟩ ∷ σ} {x} x∉σ
with x ≟ y
... | yes refl = ⊥-elim (x∉σ (p⊆p∪q _ _ (x∈⁅x⁆ y)))
... | no x≠y =
x∉domσ→no-lookup {σ}{x} λ x∈σ → x∉σ (q⊆p∪q _ _ x∈σ)
x∉domσ→no-lookup {⟨ op ⦅ Ls ⦆ , M ⟩ ∷ σ} {x} x∉σ =
x∉domσ→no-lookup {σ}{x} λ x∈σ → x∉σ (q⊆p∪q _ _ x∈σ)
x∉domσ→subst-id : ∀{σ}{x}
→ x ∉ dom σ
→ subst σ (` x) ≡ ` x
x∉domσ→subst-id {σ}{x} x∉σ
with lookup σ x | inspect (lookup σ) x
... | nothing | [ σx ] = refl
... | just M | [ σx ]
rewrite x∉domσ→no-lookup {σ} x∉σ
with σx
... | ()
M∩domσ⊆∅→subst-id : ∀{M}{σ}
→ vars M ∩ dom σ ⊆ ∅
→ subst σ M ≡ M
M∩domσ⊆∅→subst-vec-id : ∀{n}{Ms : Vec Term n}{σ}
→ vars-vec Ms ∩ dom σ ⊆ ∅
→ subst-vec σ Ms ≡ Ms
M∩domσ⊆∅→subst-vec-id {zero} {[]} {σ} M∩domσ⊆∅ = refl
M∩domσ⊆∅→subst-vec-id {suc n} {M ∷ Ms} {σ} M∩domσ⊆∅
rewrite ∪-distrib-∩ {vars M} {vars-vec Ms} {dom σ} =
cong₂ _∷_ (M∩domσ⊆∅→subst-id Mσ⊆∅) (M∩domσ⊆∅→subst-vec-id {n}{Ms}{σ} Msσ⊆∅)
where
Mσ⊆∅ : vars M ∩ dom σ ⊆ ∅
Mσ⊆∅ {x} x∈M∩domσ = M∩domσ⊆∅ {x} (p⊆p∪q _ _ {x} x∈M∩domσ)
Msσ⊆∅ : vars-vec Ms ∩ dom σ ⊆ ∅
Msσ⊆∅ {x} x∈Ms∩domσ = M∩domσ⊆∅ {x} (q⊆p∪q _ _ {x} x∈Ms∩domσ)
M∩domσ⊆∅→subst-id {` x} {σ} M∩domσ⊆∅ = x∉domσ→subst-id {σ} G
where
G : x ∉ dom σ
G x∈domσ rewrite x∈p→⁅x⁆∩p≡⁅x⁆ x (dom σ) x∈domσ =
let x∈∅ = M∩domσ⊆∅ {x} (x∈⁅x⁆ x) in
∉∅ {x} x∈∅
M∩domσ⊆∅→subst-id {op ⦅ Ms ⦆} {σ} M∩domσ⊆∅ =
cong (λ □ → op ⦅ □ ⦆) (M∩domσ⊆∅→subst-vec-id {Ms = Ms} M∩domσ⊆∅)
Special case for dom of a list of equations.
x∉p∪q→x∉p×x∉q : ∀ {p q x} → x ∉ p ∪ q → x ∉ p × x ∉ q
x∉p∪q→x∉p×x∉q {p}{q}{x} x∉pq = ⟨ x∉p , x∉q ⟩
where
x∉p : x ∉ p
x∉p x∈p = x∉pq (p⊆p∪q _ _ x∈p)
x∉q : x ∉ q
x∉q x∈q = x∉pq (q⊆p∪q _ _ x∈q)
subst-dom : ∀{x}{M}{σ}
→ x ∉ dom σ
→ dom ([ M / x ] σ) ≡ dom σ
subst-dom {x} {M} {[]} x∉σ = refl
subst-dom {x} {M} {⟨ L , N ⟩ ∷ σ} x∉Lσ
with x∉p∪q→x∉p×x∉q x∉Lσ
... | ⟨ x∉L , x∉σ ⟩
rewrite no-vars→subst-id {L}{x}{M} x∉L
| subst-dom {x} {M} {σ} x∉σ = refl
Substitution removes variables from terms.
vars-subst-∪ : ∀{N}{x M}
→ vars ([ x := M ] N) ⊆ vars M ∪ (vars N - ⁅ x ⁆)
vars-vec-subst-∪ : ∀{n}{Ns : Vec Term n}{x M}
→ vars-vec ([ x ::= M ] Ns) ⊆ vars M ∪ (vars-vec Ns - ⁅ x ⁆)
vars-subst-∪ {` y} {x} {M}
with x ≟ y
... | yes refl =
begin⊆
vars M ⊆⟨ ∪-identityʳ₁ (vars M) ⟩
vars M ∪ ∅ ⊆⟨ p⊆r→q⊆s→p∪q⊆r∪s ⊆-refl ∅⊆p ⟩
vars M ∪ (⁅ y ⁆ - ⁅ y ⁆)
■
... | no xy =
begin⊆
⁅ y ⁆ ⊆⟨ q⊆p∪q (vars M) ⁅ y ⁆ ⟩
vars M ∪ ⁅ y ⁆ ⊆⟨ p⊆r→q⊆s→p∪q⊆r∪s ⊆-refl (⊆-reflexive (sym (⁅y⁆-⁅x⁆≡⁅y⁆ xy) )) ⟩
vars M ∪ (⁅ y ⁆ - ⁅ x ⁆)
■
vars-subst-∪ {op ⦅ Ns ⦆} {x} {M} = vars-vec-subst-∪ {Ns = Ns}
vars-vec-subst-∪ {zero} {[]} {x} {M} = ∅⊆p
vars-vec-subst-∪ {suc n} {N ∷ Ns} {x} {M} =
begin⊆
vars ([ x := M ] N) ∪ vars-vec ([ x ::= M ] Ns) ⊆⟨ p⊆r→q⊆s→p∪q⊆r∪s (vars-subst-∪ {N}{x}{M}) (vars-vec-subst-∪ {Ns = Ns}{x}{M}) ⟩
(vars M ∪ (vars N - ⁅ x ⁆)) ∪ (vars M ∪ (vars-vec Ns - ⁅ x ⁆)) ⊆⟨ ⊆-reflexive (∪-assoc _ _ _) ⟩
vars M ∪ ((vars N - ⁅ x ⁆) ∪ (vars M ∪ (vars-vec Ns - ⁅ x ⁆))) ⊆⟨ ⊆-reflexive (cong (λ □ → vars M ∪ □) (sym (∪-assoc _ _ _))) ⟩
vars M ∪ (((vars N - ⁅ x ⁆) ∪ vars M) ∪ (vars-vec Ns - ⁅ x ⁆)) ⊆⟨ ⊆-reflexive (cong (λ □ → vars M ∪ (□ ∪ (vars-vec Ns - ⁅ x ⁆))) (∪-comm _ _)) ⟩
vars M ∪ ((vars M ∪ (vars N - ⁅ x ⁆)) ∪ (vars-vec Ns - ⁅ x ⁆)) ⊆⟨ ⊆-reflexive (cong (λ □ → vars M ∪ □) (∪-assoc _ _ _)) ⟩
vars M ∪ (vars M ∪ ((vars N - ⁅ x ⁆) ∪ (vars-vec Ns - ⁅ x ⁆))) ⊆⟨ ⊆-reflexive (sym (∪-assoc _ _ _)) ⟩
(vars M ∪ vars M) ∪ ((vars N - ⁅ x ⁆) ∪ (vars-vec Ns - ⁅ x ⁆)) ⊆⟨ p⊆r→q⊆s→p∪q⊆r∪s ⊆-refl (⊆-reflexive (distrib-∪- _ _ _)) ⟩
(vars M ∪ vars M) ∪ ((vars N ∪ vars-vec Ns) - ⁅ x ⁆) ⊆⟨ p⊆r→q⊆s→p∪q⊆r∪s (⊆-reflexive (∪-idem _)) ⊆-refl ⟩
vars M ∪ ((vars N ∪ vars-vec Ns) - ⁅ x ⁆) ■
vars-eqs-subst-∪ : ∀{eqs}{x M}
→ vars-eqs ([ M / x ] eqs) ⊆ vars M ∪ (vars-eqs eqs - ⁅ x ⁆)
vars-eqs-subst-∪ {[]} {x} {M} = ∅⊆p
vars-eqs-subst-∪ {⟨ L , N ⟩ ∷ eqs} {x} {M} =
let IH = vars-eqs-subst-∪ {eqs} {x} {M} in
begin⊆
vars ([ x := M ] L) ∪ vars ([ x := M ] N) ∪ vars-eqs ([ M / x ] eqs) ⊆⟨ p⊆r→q⊆s→p∪q⊆r∪s (vars-subst-∪ {L}) (p⊆r→q⊆s→p∪q⊆r∪s (vars-subst-∪ {N}) IH) ⟩
(vars M ∪ (vars L - ⁅ x ⁆)) ∪ (vars M ∪ (vars N - ⁅ x ⁆)) ∪ (vars M ∪ (vars-eqs eqs - ⁅ x ⁆)) ⊆⟨ ⊆-reflexive G ⟩
vars M ∪ (vars L ∪ vars N ∪ vars-eqs eqs) - ⁅ x ⁆
■
where
L-x = (vars L - ⁅ x ⁆)
N-x = (vars N - ⁅ x ⁆)
eqs-x = (vars-eqs eqs - ⁅ x ⁆)
G : (vars M ∪ (vars L - ⁅ x ⁆)) ∪ (vars M ∪ (vars N - ⁅ x ⁆)) ∪ (vars M ∪ eqs-x)
≡ vars M ∪ (vars L ∪ vars N ∪ vars-eqs eqs) - ⁅ x ⁆
G rewrite ∪-assoc (vars M) L-x ((vars M ∪ N-x) ∪ (vars M ∪ eqs-x))
| ∪-assoc (vars M) N-x (vars M ∪ eqs-x)
| sym (∪-assoc L-x (vars M) (N-x ∪ vars M ∪ eqs-x))
| ∪-comm L-x (vars M)
| ∪-assoc (vars M) L-x (N-x ∪ vars M ∪ eqs-x)
| sym (∪-assoc L-x N-x (vars M ∪ eqs-x))
| sym (∪-assoc (L-x ∪ N-x) (vars M) eqs-x)
| ∪-comm (L-x ∪ N-x) (vars M)
| ∪-assoc (vars M) (L-x ∪ N-x) eqs-x
| sym (∪-assoc (vars M) (vars M) (vars M ∪ (L-x ∪ N-x) ∪ eqs-x))
| distrib-∪- (vars L) (vars N) ⁅ x ⁆
| distrib-∪- (vars L ∪ vars N) (vars-eqs eqs) ⁅ x ⁆
| ∪-idem (vars M)
| sym (∪-assoc (vars M) (vars M) (((vars L ∪ vars N) ∪ vars-eqs eqs) - ⁅ x ⁆))
| ∪-idem (vars M)
| ∪-assoc (vars L) (vars N) (vars-eqs eqs) = refl
subst-pres-idem : ∀{x}{M}{σ}
→ IdemSubst σ
→ x ∉ dom σ
→ vars M ∩ dom σ ⊆ ∅
→ IdemSubst ([ M / x ] σ)
subst-pres-idem {x} {M} {[]} empty x∉σ M∩σ⊆∅ = empty
subst-pres-idem {x} {M} {(⟨ ` y , N ⟩ ∷ σ)} (insert y∉N y∉σ N∩domσ⊆∅ Sσ) x∉σ M∩σ⊆∅
with x ≟ y
... | yes refl = ⊥-elim (x∉σ (p⊆p∪q _ _ (x∈⁅x⁆ y)))
... | no xy = insert G1 G2 G3 G4
where
G1 : y ∉ vars ([ x := M ] N)
G1 y∈[x:=M]N
with proj₁ (∈∪ _ _ _) (vars-subst-∪ {N}{x}{M} y∈[x:=M]N)
... | inj₁ y∈M =
let y∈M∩[y]∪σ = proj₂ (∈∩ _ _ _) ⟨ y∈M , p⊆p∪q _ (dom σ) (x∈⁅x⁆ y) ⟩ in
⊥-elim (∉∅ (M∩σ⊆∅ y∈M∩[y]∪σ))
... | inj₂ y∈N-x =
let y∈N = p-q⊆p _ _ y∈N-x in
⊥-elim (y∉N y∈N)
G5 : vars M ∩ dom σ ⊆ ∅
G5 {z} z∈
with proj₁ (∈∩ _ _ _) z∈
... | ⟨ z∈M , z∈σ ⟩ =
M∩σ⊆∅ {z} (proj₂ (∈∩ _ _ _) ⟨ z∈M , (q⊆p∪q _ _ z∈σ) ⟩)
G2 : y ∉ vars-eqs ([ M / x ] σ)
G2 y∈[M/x]σ
with proj₁ (∈∪ _ _ _) (vars-eqs-subst-∪ {σ}{x}{M} y∈[M/x]σ)
... | inj₁ y∈M = ∉∅ (M∩σ⊆∅ {y} (proj₂ (∈∩ _ _ _) ⟨ y∈M , (p⊆p∪q _ _ (x∈⁅x⁆ y)) ⟩))
... | inj₂ y∈σ-[x] = ⊥-elim (y∉σ (p-q⊆p _ _ y∈σ-[x]))
G3 : vars ([ x := M ] N) ∩ dom ([ M / x ] σ) ⊆ ∅
G3 = begin⊆
vars ([ x := M ] N) ∩ dom ([ M / x ] σ) ⊆⟨ p⊆r→q⊆s→p∩q⊆r∩s (vars-subst-∪ {N}{x}{M}) (⊆-reflexive (subst-dom{x}{M}{σ} λ x∈σ → (x∉σ (q⊆p∪q _ _ x∈σ)))) ⟩
(vars M ∪ (vars N - ⁅ x ⁆)) ∩ dom σ ⊆⟨ p⊆r→q⊆s→p∩q⊆r∩s (p⊆r→q⊆s→p∪q⊆r∪s ⊆-refl (p-q⊆p _ _)) ⊆-refl ⟩
(vars M ∪ vars N) ∩ dom σ ⊆⟨ ⊆-reflexive ∪-distrib-∩ ⟩
(vars M ∩ dom σ) ∪ (vars N ∩ dom σ) ⊆⟨ p⊆r→q⊆s→p∪q⊆r∪s G5 N∩domσ⊆∅ ⟩
∅ ∪ ∅ ⊆⟨ ⊆-reflexive (∅∪p≡p _) ⟩
∅
■
G4 : IdemSubst ([ M / x ] σ)
G4 = subst-pres-idem {x} {M}{σ} Sσ (λ x∈σ → x∉σ (q⊆p∪q _ _ x∈σ)) G5
M∩domσ⊆∅ : ∀{x}{M}{σ}{eqs}
→ IdemSubst σ
→ (⁅ x ⁆ ∪ vars M ∪ vars-eqs eqs) ∩ dom σ ⊆ ∅
→ vars M ∩ dom ([ M / x ] σ) ⊆ ∅
M∩domσ⊆∅ {x} {M} {[]} {eqs} empty sub {y} y∈
with proj₁ (∈∩ y _ _) y∈
... | ⟨ y∈M , y∈∅ ⟩ = y∈∅
M∩domσ⊆∅ {x} {M} {(⟨ ` y , N ⟩ ∷ σ)} {eqs} (insert x₁ x₂ x₃ Sσ) sub =
G
where
sub' : (⁅ x ⁆ ∪ vars M ∪ vars-eqs eqs) ∩ dom σ ⊆ ∅
sub' {y} y∈
with proj₁ (∈∩ y _ _) y∈
... | ⟨ y∈[x]Meqs , y∈domσ ⟩ = sub {y} (proj₂ (∈∩ y _ _) ⟨ y∈[x]Meqs , (p⊆r→p⊆q∪r _ _ _ ⊆-refl y∈domσ) ⟩)
IH : vars M ∩ dom ([ M / x ] σ) ⊆ ∅
IH = M∩domσ⊆∅ {x} {M} {σ} {eqs} Sσ sub'
x≢y : x ≢ y
x≢y refl rewrite ∪-distrib-∩ {⁅ y ⁆} {vars M ∪ vars-eqs eqs} {⁅ y ⁆ ∪ dom σ} =
∉∅ (sub {y} K)
where
K : y ∈ (⁅ y ⁆ ∩ (⁅ y ⁆ ∪ dom σ)) ∪ ((vars M ∪ vars-eqs eqs) ∩ (⁅ y ⁆ ∪ dom σ))
K = p⊆p∪q _ _ (proj₂ (∈∩ y _ _) ⟨ (x∈⁅x⁆ y) , (p⊆p∪q _ _ (x∈⁅x⁆ y)) ⟩)
x∉domσ : x ∉ dom σ
x∉domσ x∈domσ = ∉∅ (sub {x} J)
where
J : x ∈ (⁅ x ⁆ ∪ vars M ∪ vars-eqs eqs) ∩ (⁅ y ⁆ ∪ dom σ)
J = proj₂ (∈∩ x _ _ ) ⟨ (p⊆p∪q _ _ (x∈⁅x⁆ x)) , (q⊆p∪q _ _ x∈domσ) ⟩
H : vars M ∩ (⁅ y ⁆ ∪ dom ([ M / x ] σ)) ⊆ ∅
H {z} z∈
with proj₁ (∈∩ z _ _) z∈
... | ⟨ z∈M , z∈[y]∪domσ ⟩
rewrite subst-dom{x}{M}{σ} x∉domσ =
sub {z} ((proj₂ (∈∩ z _ _) ⟨ (p⊆r→p⊆q∪r _ _ _ ⊆-refl (p⊆q→p⊆q∪r _ _ _ ⊆-refl z∈M)) ,
z∈[y]∪domσ ⟩))
G : vars M ∩ dom ([ M / x ] (⟨ ` y , N ⟩ ∷ σ)) ⊆ ∅
G
with x ≟ y
... | yes refl = ⊥-elim (x≢y refl)
... | no xy = H
insert-subst : ∀{x}{M}{σ}{eqs}
→ x ∉ vars M
→ (⁅ x ⁆ ∪ vars M ∪ vars-eqs eqs) ∩ dom σ ⊆ ∅
→ IdemSubst σ
→ IdemSubst (⟨ ` x , M ⟩ ∷ ([ M / x ] σ))
insert-subst {x}{M}{σ}{eqs} x∉M eqs∩domσ⊆∅ Sσ =
insert x∉M K (M∩domσ⊆∅ {x}{M}{σ}{eqs} Sσ eqs∩domσ⊆∅)
(subst-pres-idem Sσ H G)
where
K : x ∉ vars-eqs ([ M / x ] σ)
K x∈[M/x]σ
with proj₁ (∈∪ _ _ _) (vars-eqs-subst-∪ {σ}{x}{M} x∈[M/x]σ)
... | inj₁ x∈M = x∉M x∈M
... | inj₂ x∈σ-x = x∉p-⁅x⁆ _ _ x∈σ-x
H : x ∉ dom σ
H x∈domσ =
let x∈∅ = eqs∩domσ⊆∅ {x} (proj₂ (∈∩ _ _ _) ⟨ (p⊆p∪q _ _ (x∈⁅x⁆ x)) , x∈domσ ⟩) in
∉∅ x∈∅
G : vars M ∩ dom σ ⊆ ∅
G {y} y∈
with proj₁ (∈∩ _ _ _) y∈
... | ⟨ y∈M , y∈domσ ⟩ =
eqs∩domσ⊆∅ {y} (proj₂ (∈∩ _ _ _) ⟨ (q⊆p∪q _ _ (p⊆p∪q _ _ y∈M) ) , y∈domσ ⟩)
subst-compose-var : ∀ σ' σ α
→ subst (σ' ∘ σ) (` α) ≡ subst σ' (subst σ (` α))
subst-compose-var σ' [] α = refl
subst-compose-var σ' (⟨ A , B ⟩ ∷ σ) α = G A
where
IH : subst (σ' ∘ σ) (` α) ≡ subst σ' (subst σ (` α))
IH = subst-compose-var σ' σ α
G : ∀ A → subst (σ' ∘ (⟨ A , B ⟩ ∷ σ)) (` α)
≡ subst σ' (subst (⟨ A , B ⟩ ∷ σ) (` α))
G (` β)
with α ≟ β
... | yes refl = refl
G (` β) | no α≠β = IH
G (op ⦅ Ts ⦆) = IH
subst-compose : ∀ σ σ' A
→ subst (σ' ∘ σ) A ≡ subst σ' (subst σ A)
subst-vec-compose : ∀ σ σ' {n} (As : Vec Term n)
→ subst-vec (σ' ∘ σ) As ≡ subst-vec σ' (subst-vec σ As)
subst-compose σ σ' (` α) = subst-compose-var σ' σ α
subst-compose σ σ' (op ⦅ Ts ⦆)
rewrite subst-vec-compose σ σ' Ts = refl
subst-vec-compose σ σ' {zero} [] = refl
subst-vec-compose σ σ' {suc n} (T ∷ Ts)
rewrite subst-compose σ σ' T
| subst-vec-compose σ σ' {n} Ts = refl