-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtopology.tex
458 lines (387 loc) · 15.4 KB
/
topology.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
\documentclass{article}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{stmaryrd}
\usepackage{hyperref}
\usepackage{xypic}
\newtheorem{theorem}{Theorem}%[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}{Corollary}
\newtheorem{definition}{Definition}%[section]
\newtheorem{conjecture}{Conjecture}%[section]
\newtheorem{example}{Example}%[section]
\newtheorem{remark}{Remark}
\newcommand{\Reals}[0]{\mathbb{R}}
\newcommand{\Rats}[0]{\mathbb{Q}}
\title{Notes on Topology}
\author{Jeremy G. Siek}
\begin{document}
\maketitle
Questions:
\begin{itemize}
\item What is the relationship between $\epsilon$-$\delta$ continuity
(i.e. limit-based continuity) on reals and continuity for complete
partial orders?
\item How does the slogan: ``only finite input is needed to produce
finite output'' apply to continuous functions on the reals?
\item How does this relate to the topology on $\mathcal{P}(\mathbb{N})$?
\end{itemize}
From Wikipedia:
\begin{quote}
``For example, in order theory, an order-preserving function $f: X \to
Y$ between particular types of partially ordered sets $X$ and $Y$ is
continuous if for each directed subset A of X, we have $\bigsqcup
f(A) = f(\bigsqcup A)$. Here $\bigsqcup$ is the least-upper bound
with respect to the orderings in $X$ and $Y$, respectively. This
notion of continuity is the same as topological continuity when the
partially ordered sets are given the Scott topology.''
\end{quote}
From Davey and Priestley:
\begin{quote}
``In analysis, a function is continuous if it preserves limits.
In a context in which a computation is modelled as the join (= limit)
of a directed set, it is natural to consider a map as being continuous if it is compatible with
the formation of directed joins. Formally, we say $f : P \to Q$ is continuous if,
for every directed set $D$ in $P$, the subset $f(Q)$ of $Q$ is directed and
\[
f\left(\sqcup D\right) = \bigsqcup \{ f(x) \mid x \in D \}
\]
... every continous map is order preserving. Where the order represents 'is less defined than'
or 'is a worse approximation then', an order-preserving map $f$ is one in which the
better the input $x$, the better the output $f(x)$.
\end{quote}
\section{Topology on $\Reals$}
We consider topological notions in the familiar setting of the real
numbers $\Reals$.
\begin{definition}[Open Interval]
$\mathcal{I}_r(x) = (x-r,x+r)$
\end{definition}
\begin{definition}[Accumulation Point]
A point $x \in \Reals$ is an accumulation point of $A \subseteq
\Reals$ if for every $\delta > 0$, there exists $z \in
\mathcal{I}_\delta(x) \cap A$ such that $z \neq x$.
\end{definition}
\begin{definition}[Limit of Function]
Suppose $f : A \to \Reals$ and $A \subseteq \Reals$.
Suppose $c \in \Reals$ is an accumulation point of $A$.
Then
\[
\lim_{x\to c} f(x) = \ell
\]
if for every $\epsilon > 0$ there exists a $\delta > 0$
such that
\[
x \in \mathcal{I}_\delta(c) \implies f(x) \in \mathcal{I}_\epsilon(\ell)
\]
\end{definition}
\begin{definition}[Continuous]
A function $f : A \to \Reals$, with $A \subseteq \Reals$,
is continuous at $c \in A$ if $f$ preserves the limit at $c$:
\[
\lim_{x\to c} f(x) = f(c)
\]
or equivalently, expanding the definition of limit, for every
$\epsilon > 0$, there exists $\delta > 0$ such that
\[
|x - c| < \delta \land x \in A \implies |f(x) - f(c)| < \epsilon
\]
or in terms of open intervals,
\[
x \in \mathcal{I}_\delta(c) \land x \in A \implies f(x) \in \mathcal{I}_\epsilon(f(c)).
\]
A function $f$ is continuous on a set $B \subseteq A$ if it is
continuous on every element in B.
\end{definition}
\begin{example}
$f(x) = \sqrt x$ is continuous at all $c > 0$.
For $0 \leq x$, we calculate
\begin{equation}\label{eq:sqrt-cont-1}
|f(x) - f(c)| = |\sqrt x - \sqrt c|
= \left| \frac{x - c}{\sqrt x + \sqrt c} \right|
\leq \frac{1}{\sqrt c} |x - c|
\end{equation}
Choose $\delta = \epsilon \sqrt c$. Assume $|x - c| < \epsilon \sqrt c$
and $x \in A$. We need to show that $|\sqrt x - \sqrt c| < \epsilon$.
From the assumption we have $\frac{1}{\sqrt c}|x - c| < \epsilon$,
and then by calculation \eqref{eq:sqrt-cont-1} we conclude.
\end{example}
\begin{example}
\[
\mathrm{sign}(x) =
\begin{cases}
1 & \text{if } x > 0 \\
0 & \text{if } x = 0 \\
-1 & \text{if } x < 0
\end{cases}
\]
$\mathrm{sign}$ is not continuous at $0$. Consider $\epsilon = \frac{1}{2}$.
We have $|f(x)| = 1$ for any $x \neq 0$, no matter how close $x$ is to
$0$. And obviously, $|f(x)| = 1 \not < \frac{1}{2}$.
\end{example}
\begin{definition}[Neighborhood]
A set $U \subseteq \Reals$ is a neighborhood of $x \in \Reals$
if there is a $\delta > 0$ such that $\mathcal{I}_\delta(x) \subseteq U$.
(Munkres instead defines a neighborhood of $x$ to be
an open set containing $x$.)
\end{definition}
\begin{definition}[N-Continuous]
A function $f : A \to \Reals$, with $A \subseteq \Reals$,
is n-continuous at $c \in A$ if for every neighborhood
$V$ of $f(c)$ there exists a neighborhood $U$ of $c$
such that
\[
x \in A \cap U \implies f(x) \in V
\]
\end{definition}
\begin{proposition}
Continuous and n-continuous are equivalent.
\end{proposition}
\begin{proof}
Intuitively, the reason that they are the same is that in the
definition of continuity, we talk of all the $x$'s that are within
a certain distance of $c$, which means we're talking about an open
interval around $c$, and a neighborhood of $c$ is guaranteed to
include such a open interval around $c$. (And similarly for an open
interval around $f(c)$.)
\begin{enumerate}
\item (continuous $\implies$ n-continuous)
Suppose $f$ is continuous at $c$.
Let $V$ be a neighborhood of $f(c)$.
By the definition of neighborhood there exists a $\epsilon > 0$ such that
\begin{equation} \label{eq:ball-V-1}
\mathcal{I}_\epsilon(f(c)) \subseteq V
\end{equation}
Because $f : A \to \Reals$ is continuous at $c$,
there exists $\delta > 0$ such that
\begin{equation} \label{eq:ed-cont-1}
|x - c| < \delta \land x \in A \implies |f(x) - f(c)| < \epsilon
\end{equation}
Choose $U=\mathcal{I}_\delta(c)$. We need to show
\[
x \in A \cap U \implies f(x) \in V
\]
We assume $x \in A \cap U$. Then by \eqref{eq:ed-cont-1} we have
$|f(x) - f(c)| < \epsilon$. So $f(x) \in \mathcal{I}_\epsilon(f(c))$
and then $f(x) \in V$ by \eqref{eq:ball-V-1}.
Therefore $f$ is n-continuous.
\item (n-continuous $\implies$ continuous) Suppose $f$ is
n-continouous at $c$ and $\epsilon > 0$. Note that
$\mathcal{I}_\epsilon(f(c))$ is a neighborhood of $f(c)$. Then because $f$
n-continuous there is a neighborhood $U$ of $c$ such that
\begin{equation}\label{eq:xU-fx-Be}
x \in A \cap U \implies f(x) \in \mathcal{I}_\epsilon(f(c))
\end{equation}
Because $U$ is a neighborhood of $c$, there is a $\delta > 0$
such that $\mathcal{I}_\delta(c) \subseteq U$. We need to show that
\[
|x - c| < \delta \land x \in A \implies |f(x) - f(c)| < \epsilon
\]
Assume $|x - c| < \delta$ and $x \in A$.
We have $x \in U$, then by \eqref{eq:xU-fx-Be} obtain
$f(x) \in \mathcal{I}_\epsilon(f(c))$. From this we conclude that
$|f(x) - f(c)| < \epsilon$. Therefore $f$ is continuous.
\end{enumerate}
\end{proof}
\begin{definition}[Open Set]
A set $A$ is open in $\Reals$ if for every $x \in A$ there exists
$\delta > 0$ such that $\mathcal{I}_\delta(x) \subseteq A$.
\end{definition}
\begin{definition}[O-Continuous]
A function $f : A \to \Reals$ is o-continuous if for each
open set $V \subseteq \Reals$, $f^{-1}(V)$ is an open subset of $A$.
\end{definition}
\begin{proposition}
Continuous and o-continuous are equivalent.
\end{proposition}
\begin{proof}\
\begin{enumerate}
\item (continuous $\implies$ o-continuous)
Let $V \subseteq \Reals$ be an open set.
We need to show that $f^{-1}(V)$ is an open set.
Let $c$ be an arbitrary member of $f^{-1}(V)$. We need
to show that there exists an open interval around $c$
that is contained by $f^{-1}(V)$.
%
We have $f(c) \in V$. Then because $V$ is open, there exists
$\epsilon > 0$ such that
\begin{equation}\label{eq:i-fc-v}
\mathcal{I}_\epsilon(f(c)) \subseteq V
\end{equation}
Then by the
continuity of $f$, there is a $\delta > 0$ such that
\begin{equation}\label{eq:fx-iefc}
x \in \mathcal{I}_\delta(c) \implies f(x) \in \mathcal{I}_\epsilon(f(c))
\end{equation}
Now that we have an appropriate $\delta$, we need to show
\[
\mathcal{I}_\delta(c) \subseteq f^{-1}(V) = \{ x \mid f(x) \in V \}
\]
Let $x$ be an arbitrary point in $\mathcal{I}_\delta(c)$. So by
\eqref{eq:fx-iefc} we have $f(x) \in \mathcal{I}_\epsilon(f(c))$. Then by
\eqref{eq:i-fc-v} we have $f(x) \in V$, therefore $x \in f^{-1}(V)$.
\item (o-continuous $\implies$ continuous) Let $\epsilon > 0$. Observe
that $V=\mathcal{I}_\epsilon(f(c))$ is an open set. Then because $f$ is
o-continuous, $f^{-1}(V)$ is an open set. We know $c \in
f^{-1}(V)$, so there exists a $\delta > 0$ such that
\begin{equation}\label{eq:id-fv}
\mathcal{I}_\delta(c) \subseteq f^{-1}(V)
\end{equation}
We need to show that
\[
x \in \mathcal{I}_\delta(c) \implies f(x) \in V
\]
We assume $x \in \mathcal{I}_\delta(c)$, so also $x \in f^{-1}(V)$
by \eqref{eq:id-fv} and therefore $f(x) \in V$.
\end{enumerate}
\end{proof}
\begin{definition}[S-Continuous]
Suppose $f : A \to \Reals$ and $A \subseteq \Reals$.
Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in $A$.
If $(x_n)$ converges to $c$, then $(f(x_n))$ converges to $f(c)$.
\[
\lim_{n\to\infty} x_n = c \implies
\lim_{n\to\infty} f(x_n) = f(c)
\]
\end{definition}
\paragraph{Rational (Finite) Approximations of Reals}
Next we talk about using rational intervals to approximate real
numbers. For $p,q \in \Rats$ with $p \leq q$, the pair $\langle p,q \rangle$
represents the closed interval from $p$ to $q$. Alternatively, one can
consider an interval centered at $r$ with error bound $e$, but then we
just have $p = r-e$ and $q = r+e$. We form a partial order
$\mathcal{R}$ containing both the real numbers and the rational
intervals.
\[
\mathcal{R} = \Reals \cup \{ \langle p,q \rangle \mid p,q \in \Rats \}
\]
Each rational interval can be viewed as a finite approximation for any
real number $x$ within the interval.
\[
\langle p,q \rangle \sqsubseteq x \qquad \text{iff } p \leq x \leq q
\]
An interval $\langle p_1,q_1 \rangle$ is a worse approximation than interval
$\langle p_2,q_2 \rangle$ if the first interval contains the second, i.e.
\[
\langle p_1,q_1 \rangle \sqsubseteq \langle p_2,q_2 \rangle
\qquad
\text{iff }
p_1 \leq p_2
\text{ and }
q_2 \leq q_1
\]
\[
\xymatrix@=15pt{
\underset{p_1}{\bullet} \ar@{-}[rrr] & & &
\underset{p_2}{\bullet} \ar@{-}[rr] & &
\underset{q_2}{\bullet} \ar@{-}[r] &
\underset{q_1}{\bullet}
}
\]
The interval $\langle q,q \rangle$ is just as good an approximation of the rational
number $q$ as $q$, so we have
\[
q \sqsubseteq \langle q,q \rangle
\]
And of course, every real $x \in \Reals$ is an equally good
approximation to itself.
\[
x \sqsubseteq x
\]
We write $a \sqsubset b$ if $a \sqsubseteq b$ and $a \neq b$.
The join $\sqcup$ is induced by the $\sqsubseteq$ ordering, so $a
\sqcup b$ is the least upper bound of $\{a,b\}$. Similarly, the meet
$a \sqcap b$ is greatest lower bound of $\{a,b\}$. For example, the
join $\sqcup$ of two intervals collects their common information, that
is, it is the intersection of the two intervals.
\[
\langle p_1,q_1 \rangle \sqcup \langle p_2,q_2 \rangle = \langle \max(p_1, p_2), \min(q_1, q_2) \rangle
\]
Given a subset $S \subseteq \mathcal{R}$, the least upper bound of $S$
is written $\bigsqcup S$. Some sets of rational intervals do not have
a least upper bound because they have no intersection, such as $\{
\langle 0,\frac{1}{3} \rangle, \langle \frac{2}{3},1 \rangle \}$. A
real number can be identified by the least upper bound of an infinite
set of rational intervals. If we have an infinite sequence of
intervals that are progressively better approximations
\[
a_1 \sqsubset a_2 \sqsubset a_3 \sqsubset \cdots
\]
then the Nested Intervals Theorem says the sequence will have a real
number as its least upper bound
\[
\bigsqcup \{ a_1,a_2,a_3,\ldots \} \in \Reals
\]
Need to review what is a real number.
\begin{itemize}
\item Dedekind: a real number is a pair $\langle L, R \rangle$
where $L$ and $R$ are sets of rational numbers that partition
$\Rats$ and that for every $p \in L, q \in R$ we have $p < q$.
\end{itemize}
%% The meet $\sqcap$ of two intervals is the interval that contains both
%% of them. (Or should we add collections of intervals to $\mathcal{R}$
%% as in Vickers?)
%% \[
%% \langle p_1,q_1 \rangle \sqcap \langle p_2,q_2 \rangle = \langle \min(p_1, p_2), \max(q_1, q_2) \rangle
%% \]
%% Given a subset $S \subseteq \mathcal{R}$, the greatest lower bound of
%% $S$ is written $\bigsqcap S$.
Now let us consider functions on real numbers, and how we might
approximate them on rationals. Suppose $f \in A \to \Reals$ and $x \in
A \subseteq \Reals$. We wish we could have the exact result $f(x)$ but
will be satisfied if we are given a rational interval $\langle p', q'
\rangle$ that contains $f(x)$ and that is small enough, i.e., $|p' -
q'| < \epsilon$ for some choice of $\epsilon$. If $f$ is continuous,
then we know there is a $\delta$ such that
\[
\forall y.\; |y-x| < \delta \implies |f(y) - f(x)| < \epsilon
\]
If we can find a rational number $p$ that is close enough to $x$, that
is, $|p-x| < \delta$, then we'll know that $f(p)$ is close enough to
$f(x)$, that is $|f(p) - f(x)| < \epsilon$.
Is there a sequence of rational intervals for every real number? If
so, then we can march through the sequence $\langle p_1,q_1 \rangle,
\langle p_2,q_2 \rangle, \ldots$ until we get to an interval $\langle
p_i,q_i \rangle$ that is small enough ($|p_i - q_i| < \delta$) and
choose the middle $m=\frac{q_i - p_i}{2}$. So we have $|m - x| <
\delta$ and therefore $|f(m) - f(x)| < \epsilon$, as desired.
%% Now let us consider the relationship between rational intervals and
%% continuous functions on the reals. Suppose $f : A \to \Reals$ with $A
%% \subseteq \Reals$.
Hmm, how to relate the above to the following.
We lift $f$ to a function $f^\dagger : A' \to \mathcal{R}$ with $A'
\subseteq \mathcal{R}$ as follows.
\begin{align*}
f^\dagger(a) =
\begin{cases}
f(x) & \text{if } a=x \in \Reals \\
\langle p',q' \rangle & \text{if } a = \langle p,q \rangle \text{ and }
\forall x, p \leq x \leq q \implies p' \leq f(x) \leq q'
\end{cases}
\end{align*}
\begin{theorem}
If $f : A \to \Reals$ is continuous and $S \subseteq \mathcal{R}$
with some conditions on $S$,
then
\[
\bigsqcup \{ f^\dagger(a) \mid a \in S \} = f^\dagger\left(\bigsqcup S\right)
\]
\end{theorem}
\begin{proof}
UNDER CONSTRUCTION
\end{proof}
\section{Topology on $\mathcal{P}(\mathbb{N})$}
\section{Scott Topology}
\begin{definition}
A set $S \subseteq P$ of a poset $P$ is Scott-open if it is upward
closed and if all directed sets $D$ with lub in $S$ have non-empty
intersection with $S$.
A partial order $P$ and all of its Scott-open subsets forms a
topological space, the Scott-topology.
\end{definition}
\section{Miscelaneous}
In a $T_0$ space on $X$ (aka. Kolmogorov space), for every pair of
points in $X$, at least one of the points is in a neighborhood that
does not contain the other point. (Wikipedia)
\end{document}