-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain.py
331 lines (274 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Data extraction by deep learning, using a fully connected architecture over token windows.
# Engineered to extract total amounts, using a few custom features.
# Achieves up to 90% accuracy.
#
# jstray 2019-6-12
import keras as K
from keras.engine.input_layer import Input
from keras.models import Model
from keras.layers import Dense, Flatten, Dropout, Lambda, concatenate
from keras.layers.embeddings import Embedding
from keras.backend import expand_dims, squeeze
import tensorflow as tf
import pandas as pd
import numpy as np
import csv
import re
import random
import pdfplumber
import os
import pickle
from decimal import Decimal
import wandb
from wandb.keras import WandbCallback
# Configuration
run = wandb.init(project="jonathan_summer_1", entity="deepform", name="testing")
config = run.config
config.read_docs = 150 # how many docs to load, at most
config.window_len = 30 # size of token sequences to train on (and network size!)
config.vocab_size = 500
config.token_dims = 7 # number of features per token, including token hash
config.positive_fraction = 0.5
config.target_thresh = 0.9 # target match scores larger than this will becomes positive labels
config.epochs = 50
config.batch_size=10000
config.steps_per_epoch = 10
config.doc_acc_sample_size = 25 # how many documents to check extraction on after each epoch
config.penalize_missed = 5 # how much more a missed 1 counts than a missed 0 in output
config.val_split = 0.2
config.len_train = 80
source_data = 'source/training.csv'
pickle_destination = 'source/cached_features.p'
# ---- Load data and generate features ----
# Generator that reads raw training data
# For each document, yields an array of dictionaries, each of which is a token
def input_docs(max_docs=None):
incsv = csv.DictReader(open(source_data, mode='r'))
# Reconstruct documents by concatenating all rows with the same slug
active_slug = None
doc_rows = []
num_docs = 0
for row in incsv:
# throw out tokens that are too short, they won't help us
token = row['token']
if len(token) < 3:
continue
if row['slug'] != active_slug:
if active_slug:
yield doc_rows
num_docs += 1
if max_docs and num_docs >= max_docs:
return
doc_rows = [row]
active_slug = row['slug']
else:
doc_rows.append(row)
yield doc_rows
def is_dollar_amount(s):
return re.search(r'\$?\d[\d,]+(\.\d\d)?',s) != None
def token_features(row, vocab_size):
tokstr = row['token'].upper()
return [ hash(tokstr) % vocab_size,
float(row['page']),
float(row['x0']),
float(row['y0']),
float(len(tokstr)),
float(np.mean([c.isdigit() for c in tokstr])),
float(is_dollar_amount(tokstr)) ]
# Load raw training data, create our per-token features and binary labels
def load_training_data_nocache(config):
slugs = []
token_text = []
features = []
labels = []
for doc_tokens in input_docs(max_docs=config.read_docs):
if len(doc_tokens) < config.window_len:
continue # TODO pad shorter docs
# Not training data, but used for evaluating results later
slugs.append(doc_tokens[0]['slug']) # unique document ID, also PDF filename
token_text.append([row['token'] for row in doc_tokens])
features.append([token_features(row, config.vocab_size) for row in doc_tokens])
# threshold fuzzy matching score with our target field, to get binary labels
labels.append([(0 if float(row['gross_amount']) < config.target_thresh else 1) for row in doc_tokens])
print("Length of slugs in load_training_data_nocache = ", len(slugs))
return slugs, token_text, features, labels
# Because generating the list of features is so expensive, we cache it on disk
def load_training_data(config):
if os.path.isfile(pickle_destination):
print('Loading training data from cache...')
slugs, token_text, features, labels = pickle.load(open(pickle_destination, 'rb'))
else:
print('Loading training data...')
slugs, token_text, features, labels = load_training_data_nocache(config)
print('Saving training data to cache...')
pickle.dump((slugs, token_text, features, labels), open(pickle_destination, 'wb'))
# Trim the training data so we can sweep across various training data sizes
print("Length of slugs in load_training_data before modification = ", len(slugs))
slugs = slugs[:config.len_train]
print("Length of slugs in load_training_data after modification = ", len(slugs))
token_text = token_text[:config.len_train]
features = features[:config.len_train]
labels = labels[:config.len_train]
return slugs, token_text, features, labels
# ---- Resample features,labels as windows ----
# returns a window of tokens, labels at a random position in a random document
def one_window_unbalanced(features, labels, window_len):
doc_idx = random.randint(0,len(features)-1)
doc_len = len(features[doc_idx])
tok_idx = random.randint(0, doc_len-window_len)
return features[doc_idx][tok_idx : tok_idx+window_len], labels[doc_idx][tok_idx : tok_idx+window_len]
# control the fraction of windows that include a positive label. not efficient.
def one_window(features, labels, window_len, positive_fraction):
f,l = one_window_unbalanced(features, labels, window_len)
if random.random() > positive_fraction: # mostly positive examples
while not 1 in l:
f,l = one_window_unbalanced(features, labels, window_len)
return f,l
def windowed_generator(features, labels, config):
# Create empty arrays to contain batch of features and labels#
batch_features = np.zeros((config.batch_size, config.window_len, config.token_dims))
batch_labels = np.zeros((config.batch_size, config.window_len))
while True:
for i in range(config.batch_size):
features1,labels1 = one_window(features, labels, config.window_len, config.positive_fraction)
batch_features[i,:,:] = features1
batch_labels[i,:] = labels1
yield batch_features, batch_labels
# ---- Custom loss function is basically MSE but high penalty for missing a 1 label ---
def missed_token_loss(one_penalty):
def _missed_token_loss(y_true, y_pred):
expected_zero = tf.cast(tf.math.equal(y_true,0), tf.float32)
s = y_pred*expected_zero
zero_loss = K.backend.mean(K.backend.square(s))
expected_one = tf.cast(tf.math.equal(y_true,1), tf.float32)
t = one_penalty*(1-y_pred)*expected_one
one_loss = K.backend.mean(K.backend.square(t))
return zero_loss + one_loss
return _missed_token_loss # closes over one_penalty
# --- Specify network ---
def create_model(config):
indata = Input((config.window_len, config.token_dims))
# split into the hash and the rest of the token features, embed hash as one-hot, then merge
tok_hash = Lambda( lambda x: squeeze(K.backend.slice(x, (0,0,0), (-1,-1,1)),axis=2))(indata)
tok_features = Lambda( lambda x: K.backend.slice(x, (0,0,1), (-1,-1,-1)))(indata)
embed = Embedding(config.vocab_size, 32)(tok_hash)
merged = concatenate([embed, tok_features], axis=2)
f = Flatten()(merged)
d1 = Dense(config.window_len*config.token_dims*5, activation='sigmoid')(f)
d2 = Dropout(0.3)(d1)
d3 = Dense(config.window_len*config.token_dims, activation='sigmoid')(d2)
d4 = Dropout(0.3)(d3)
d5 = Dense(config.window_len, activation='elu')(d4)
model = Model(inputs=[indata], outputs=[d5])
model.compile(
optimizer='adam',
loss=missed_token_loss(config.penalize_missed),
metrics=['acc'])
return model
# --- Predict ---
# Our network is windowed, so we have to aggregate windows to get a final score
# Returns vector of token scores
def predict_scores(model, features, window_len):
doc_len = len(features)
num_windows = doc_len-window_len
windowed_features = np.array([features[i:i+window_len] for i in range(num_windows)])
window_scores = model.predict(windowed_features)
scores = np.zeros(doc_len)
for i in range(num_windows):
scores[i:i+window_len] += window_scores[i] # would max work better than sum?
return scores
# returns text, score of best answer
def predict_answer(model, features, token_text, window_len):
scores = predict_scores(model, features, window_len)
best_score_idx = np.argmax(scores)
best_score_text = token_text[best_score_idx]
return best_score_text, scores[best_score_idx]
# returns text of correct answer,
def correct_answer(features, labels, token_text):
answer_idx = np.argmax(labels)
answer_text = token_text[answer_idx]
return answer_text
# Calculate accuracy of answer extraction over num_to_test docs, print diagnostics while we do so
def compute_accuracy(model, window_len, slugs, token_text, features, labels, num_to_test):
acc = 0.0
for i in range(num_to_test):
doc_idx = random.randint(0, len(slugs)-1)
predict_text, predict_score = predict_answer(model, features[doc_idx], token_text[doc_idx], window_len)
answer_text = correct_answer(features[doc_idx], labels[doc_idx], token_text[doc_idx])
print(f'{slugs[doc_idx]}: guessed "{predict_text}" with score {predict_score}, correct "{answer_text}"')
if predict_text==answer_text:
acc+=1
return acc/num_to_test
# ---- Custom callback to log document-level accuracy ----
class DocAccCallback(K.callbacks.Callback):
def __init__(self, window_len, slugs, token_text, features, labels, num_to_test, logname):
self.window_len = window_len
self.slugs = slugs
self.token_text = token_text
self.features = features
self.labels = labels
self.num_to_test = num_to_test
self.logname = logname
def on_epoch_end(self, epoch, logs):
acc = compute_accuracy(self.model,
self.window_len,
self.slugs,
self.token_text,
self.features,
self.labels,
self.num_to_test+epoch) # test more docs later in training, for more precise acc
print(f'This epoch {self.logname}: {acc}')
wandb.log({self.logname:acc})
# --- MAIN ----
print('Configuration:')
print(config)
slugs, token_text, features, labels = load_training_data(config)
print(f'Loaded {len(features)}')
max_length = max([len(x) for x in labels])
print(f'Max document size {max_length}')
avg_length = sum([len(x) for x in labels])/len(labels)
print(f'Average document size {avg_length}')
# split into train and test
slugs_train = []
token_text_train = []
features_train = []
labels_train = []
slugs_val = []
token_text_val = []
features_val = []
labels_val = []
for i in range(len(features)):
if random.random() < config.val_split:
slugs_val.append(slugs[i])
token_text_val.append(token_text[i])
features_val.append(features[i])
labels_val.append(labels[i])
else:
slugs_train.append(slugs[i])
token_text_train.append(token_text[i])
features_train.append(features[i])
labels_train.append(labels[i])
print(f'Training on {len(features_train)}, validating on {len(features_val)}')
model = create_model(config)
print(model.summary())
model.fit_generator(
windowed_generator(features_train, labels_train, config),
steps_per_epoch=config.steps_per_epoch,
epochs=config.epochs,
callbacks=[
WandbCallback(),
DocAccCallback( config.window_len,
slugs_train,
token_text_train,
features_train,
labels_train,
config.doc_acc_sample_size,
'doc_train_acc'),
DocAccCallback( config.window_len,
slugs_val,
token_text_val,
features_val,
labels_val,
config.doc_acc_sample_size,
'doc_val_acc')
])