-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHappyComputing.py
229 lines (168 loc) · 7.41 KB
/
HappyComputing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from sim_distribuciones import sim_exponencial, sim_normal, sim_poisson, sim_serv_type
from collections import deque
import math
class HappyComputing:
def __init__(self, hours):
self.time = hours * 60
def run(self):
num_in = 0
#ganancia obtenida hasta el mmomento
ganancia = 0
#tiempo en que se encuentra la simulacion
time_proc = 0
# variables para las colas de los servicios
num_wait_v = deque()
num_wait_t = deque()
num_wait_te = 0
# tiempo de llegada del proximo cleinte
time_next_in = sim_poisson(20)
# tiempo de finalizacion de la atencion del empleado a su cliente actual
time_end_v1 = math.inf
time_end_v2 = math.inf
time_end_t1 = math.inf
time_end_t2 = math.inf
time_end_t3 = math.inf
time_end_te1 = math.inf
# tipo de servicio del cliente que esta atendiendo el empleado
type_v1 = 0
type_v2 = 0
type_t1 = 0
type_t2 = 0
type_t3 = 0
type_te1 = 0
while True:
if time_next_in == min(time_next_in, time_end_v1, time_end_v2, time_end_t1, time_end_t2, time_end_t3, time_end_te1) and time_next_in <= self.time:
time_proc = time_next_in
num_in += 1
num_wait_v.appendleft(sim_serv_type())
time_next_in = time_proc + sim_poisson(20)
if time_end_v1 == math.inf:
type_v1 = num_wait_v.pop()
time_end_v1 = time_proc + abs(sim_normal(5,2))
elif time_end_v2 == math.inf:
type_v2 = num_wait_v.pop()
time_end_v2 = time_proc + abs(sim_normal(5,2))
elif time_end_v1 != math.inf and time_end_v1 == min(time_end_v1, time_end_v2, time_end_t1, time_end_t2, time_end_t3, time_end_te1):
time_proc = time_end_v1
if type_v1 == 4:
ganancia += 750
elif type_v1 == 1 or type_v1 == 2:
num_wait_t.appendleft(type_v1)
if time_end_t1 == math.inf:
type_t1 = num_wait_t.pop()
time_end_t1 = time_proc + sim_exponencial(20)
elif time_end_t2 == math.inf:
type_t2 = num_wait_t.pop()
time_end_t2 = time_proc + sim_exponencial(20)
elif time_end_t3 == math.inf:
type_t3 = num_wait_t.pop()
time_end_t3 = time_proc + sim_exponencial(20)
elif time_end_te1 == math.inf and num_wait_te == 0:
type_te1 = num_wait_t.pop()
time_end_te1 = time_proc + sim_exponencial(15)
else:
num_wait_te += 1
if time_end_te1 == math.inf:
num_wait_te -= 1
type_te1 = type_v1
time_end_te1 = time_proc + sim_exponencial(15)
if len(num_wait_v) == 0:
type_v1 = 0
time_end_v1 = math.inf
else:
type_v1 = num_wait_v.pop()
time_end_v1 = time_proc + abs(sim_normal(5,2))
elif time_end_v2 != math.inf and time_end_v2 == min(time_end_v2, time_end_t1, time_end_t2, time_end_t3, time_end_te1):
time_proc = time_end_v2
if type_v2 == 4:
ganancia += 750
elif type_v2 == 1 or type_v2 == 2:
num_wait_t.appendleft(type_v2)
if time_end_t1 == math.inf:
type_t1 = num_wait_t.pop()
time_end_t1 = time_proc + sim_exponencial(20)
elif time_end_t2 == math.inf:
type_t2 = num_wait_t.pop()
time_end_t2 = time_proc + sim_exponencial(20)
elif time_end_t3 == math.inf:
type_t3 = num_wait_t.pop()
time_end_t3 = time_proc + sim_exponencial(20)
elif time_end_te1 == math.inf and num_wait_te == 0:
type_te1 = num_wait_t.pop()
time_end_te1 = time_proc + sim_exponencial(15)
else:
num_wait_te += 1
if time_end_te1 == math.inf:
num_wait_te -= 1
type_te1 = type_v2
time_end_te1 = time_proc + sim_exponencial(15)
if len(num_wait_v) == 0:
type_v2 = 0
time_end_v2 = math.inf
else:
type_v2 = num_wait_v.pop()
time_end_v2 = time_proc + abs(sim_normal(5,2))
elif time_end_t1 != math.inf and time_end_t1 == min(time_end_t1, time_end_t2, time_end_t3, time_end_te1):
time_proc = time_end_t1
if type_t1 == 1:
ganancia += 0
else:
ganancia += 350
if len(num_wait_t) == 0:
type_t1 = 0
time_end_t1 = math.inf
else:
type_t1 = num_wait_t.pop()
time_end_t1 = time_proc + sim_exponencial(20)
elif time_end_t2 != math.inf and time_end_t2 == min(time_end_t2, time_end_t3, time_end_te1):
time_proc = time_end_t2
if type_t2 == 1:
ganancia += 0
else:
ganancia += 350
if len(num_wait_t) == 0:
type_t2 = 0
time_end_t2 = math.inf
else:
type_t2 = num_wait_t.pop()
time_end_t2 = time_proc + sim_exponencial(20)
elif time_end_t3 != math.inf and time_end_t3 == min(time_end_t3, time_end_te1):
time_proc = time_end_t3
if type_t3 == 1:
ganancia += 0
else:
ganancia += 350
if len(num_wait_t) == 0:
type_t3 = 0
time_end_t3 = math.inf
else:
type_t3 = num_wait_t.pop()
time_end_t3 = time_proc + sim_exponencial(20)
elif time_end_te1 != math.inf:
time_proc = time_end_te1
if type_te1 == 1:
ganancia += 0
elif type_te1 == 2:
ganancia += 350
else:
ganancia += 500
if num_wait_te == 0:
if len(num_wait_t) == 0:
type_te1 = 0
time_end_te1 = math.inf
else:
type_te1 = num_wait_t.pop()
time_end_te1 = time_proc + sim_exponencial(15)
else:
num_wait_te -= 1
type_te1 = 3
time_end_te1 = time_proc + sim_exponencial(15)
else:
return ganancia
def calc_estimado(self, dias):
acc = 0
for _ in range(dias):
acc += self.run()
return acc/dias
proc = HappyComputing(8)
print(proc.calc_estimado(135))