-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbiomass-ant-food.html
150 lines (128 loc) · 6.04 KB
/
biomass-ant-food.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Biomass Calculation of an Ant Colony</title>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<style>
body { font-family: Arial, sans-serif; line-height: 1.6; margin: 20px; }
canvas { margin-top: 20px; border: 1px solid #000; }
.diagram { display: flex; justify-content: center; margin-top: 20px; }
</style>
</head>
<body>
<h1>Biomass Calculation of an Ant Colony</h1>
<h2>Problem Statement</h2>
<p>
The biomass of an ant colony depends on several factors, including the availability of food in the area around the colony,
the number of ants, the metabolic rate of ants, and seasonal fluctuations. This document calculates the biomass
\( M \) of an ant colony and describes how it fluctuates as a function of food resources in the vicinity.
</p>
<h2>Approach and Variables</h2>
<p>Let's define the key variables and parameters involved in calculating the biomass:</p>
<ul>
<li>\( N \): Total number of ants in the colony.</li>
<li>\( m_{\text{ant}} \): Average mass of a single ant (in grams).</li>
<li>\( f_{\text{available}} \): Food available per unit area in the vicinity of the colony (grams per square meter).</li>
<li>\( R \): Radius of the foraging area around the colony (meters).</li>
<li>\( F_{\text{total}} \): Total food available in the foraging area.</li>
<li>\( k \): Efficiency of food conversion to biomass.</li>
<li>\( r \): Metabolic rate per ant (grams of food per day).</li>
</ul>
<h2>Calculation of Biomass</h2>
<p>We start by calculating the total food available in the colony's foraging area:</p>
<p>
\[
F_{\text{total}} = f_{\text{available}} \times \pi R^2
\]
</p>
<p>The biomass \( M \) of the ant colony can be estimated as:</p>
<p>
\[
M = N \times m_{\text{ant}}
\]
</p>
<p>Where \( N \) is the population of ants, which depends on the food resources available. Assuming the colony can support a number of ants proportional to the food available:</p>
<p>
\[
N = \frac{k \cdot F_{\text{total}}}{r}
\]
</p>
<p>Combining these equations, we have the biomass \( M \) of the colony as:</p>
<p>
\[
M = m_{\text{ant}} \times \frac{k \cdot F_{\text{total}}}{r} = m_{\text{ant}} \times \frac{k \cdot f_{\text{available}} \cdot \pi R^2}{r}
\]
</p>
<h3>Interdependencies and Fluctuations</h3>
<p>The biomass \( M \) fluctuates with changes in the following variables:</p>
<ul>
<li><strong>Food Availability (\( f_{\text{available}} \))</strong>: Seasonal and environmental factors can impact the amount of food in the foraging area. Increased food availability leads to an increase in the potential ant population and biomass.</li>
<li><strong>Foraging Radius (\( R \))</strong>: Larger foraging areas increase food resources, allowing more ants and hence greater biomass. However, larger foraging distances require more energy expenditure, affecting the efficiency \( k \).</li>
<li><strong>Metabolic Rate (\( r \))</strong>: Higher metabolic rates may reduce the number of ants sustainable on the available food, thus lowering biomass.</li>
<li><strong>Efficiency (\( k \))</strong>: This factor captures how effectively ants convert food into biomass. Higher efficiency increases the colony’s capacity to support more ants, thereby increasing biomass.</li>
</ul>
<h2>Illustration of Biomass as a Function of Food Availability</h2>
<p>The following chart visualizes biomass \( M \) as a function of food availability \( f_{\text{available}} \).</p>
<div class="diagram">
<canvas id="biomassChart" width="500" height="300"></canvas>
</div>
<script>
// Set up the canvas for the chart
const canvas = document.getElementById('biomassChart');
const ctx = canvas.getContext('2d');
// Variables (assuming sample values)
const m_ant = 0.003; // Mass of one ant in grams
const k = 0.8; // Food to biomass conversion efficiency
const R = 20; // Foraging radius in meters
const r = 0.01; // Metabolic rate per ant in grams of food per day
// Calculate biomass for varying food availability
const foodAvailability = [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]; // Food availability (g/m^2)
const biomassData = foodAvailability.map(f_available => {
const F_total = f_available * Math.PI * R ** 2;
const N = (k * F_total) / r;
return m_ant * N;
});
// Draw the chart
function drawChart() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
// Set chart properties
const chartWidth = canvas.width - 50;
const chartHeight = canvas.height - 50;
const maxBiomass = Math.max(...biomassData);
// Draw axes
ctx.beginPath();
ctx.moveTo(40, 10);
ctx.lineTo(40, chartHeight);
ctx.lineTo(chartWidth, chartHeight);
ctx.stroke();
// Draw biomass bars
foodAvailability.forEach((f_available, index) => {
const barHeight = (biomassData[index] / maxBiomass) * chartHeight;
ctx.fillStyle = 'green';
ctx.fillRect(50 + index * 50, chartHeight - barHeight, 30, barHeight);
// Labels
ctx.fillStyle = 'black';
ctx.fillText(f_available + " g/m²", 50 + index * 50, chartHeight + 15);
ctx.fillText(biomassData[index].toFixed(2) + " g", 50 + index * 50, chartHeight - barHeight - 5);
});
// Labels
ctx.fillStyle = 'black';
ctx.fillText("Food Availability (g/m²)", chartWidth / 2 - 50, chartHeight + 40);
ctx.save();
ctx.rotate(-Math.PI / 2);
ctx.fillText("Biomass (g)", -chartHeight / 2 - 30, 20);
ctx.restore();
}
drawChart();
</script>
<h2>Conclusion</h2>
<p>
This model shows how the biomass \( M \) of an ant colony changes with food availability and other parameters.
Since the biomass is directly proportional to the food availability in the vicinity, fluctuations in the food resource due to seasonal changes or environmental factors
directly impact the colony's growth potential and overall biomass.
</p>
</body>
</html>