-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenoharmonize.py
525 lines (467 loc) · 33.1 KB
/
genoharmonize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import platform
import os
import glob
import shutil
import subprocess
from os.path import expanduser
try:
import colorama
from colorama import init, Fore, Style
init()
except ImportError:
import genodownload
genodownload.getcolorama()
import colorama
from colorama import init, Fore, Style
init()
home = expanduser("~")
bindir = os.path.join(home, 'software', 'bin')
# Since we use plink a lot, I'm going to go ahead and set a plink variable with the system-specific plink name.
system_check = platform.system()
if system_check in ("Linux", "Darwin"):
plink = "plink"
rm = "rm "
elif system_check == "Windows":
plink = 'plink.exe'
rm = "del "
# Determine if they have plink, if not download it.
if os.path.exists(os.path.join(bindir, plink)):
pass
else:
import genodownload
genodownload.plink()
def cluster(geno_name, allocation_name, harmonizer_path, vcf_path, legend_path, fasta_path):
# Using 1000 Genomes as a reference(based off Perl script by W.Rayner, 2015, wrayner @ well.ox.ac.uk)
# -Removes SNPs with MAF < 5% in study dataset
# -Removes SNPs not in 1000 Genomes Phase 3
# -Removes all A/T G/C SNPs with MAF > 40% in the reference data set
# -Removes all SNPs with an AF difference >0.2, between reference and dataset frequency file, frequency file is
# expected to be a plink frequency file with the same number of SNPs as the bim file
# -Removes duplicates that may be introduced with the position update
# -Removes indels #Need to figure out how to do this. Or even if it is necessary with plink files.
# -Removes SNPs with HWE p-value < 0.01
# -Updates the reference allele to match 1000G
# -Outputs new files per chromosome, in plink bed/bim/fam format.
# Make new folder where the harmonized files will be located.
if not os.path.exists('Harmonized_To_1000G'):
os.makedirs('Harmonized_To_1000G')
# Copy genotype files to new folder.
shutil.copy2(geno_name + '.bed', 'Harmonized_To_1000G')
shutil.copy2(geno_name + '.bim', 'Harmonized_To_1000G')
shutil.copy2(geno_name + '.fam', 'Harmonized_To_1000G')
# Copy post processing script to Harmonized_To_1000G folder
shutil.copy2(os.path.join('harmonize_postprocess.py', 'Harmonized_To_1000G')
# Switch to this directory.
os.chdir('Harmonized_To_1000G')
# Write script to harmonize.
with open(geno_name + '_HarmonizeTo1000G.pbs', 'w') as file:
file.write('#!/bin/bash\n'
'#PBS -l walltime=48:00:00\n'
'#PBS -l nodes=1:ppn=8\n'
'#PBS -l pmem=8gb\n'
'#PBS -A ' + allocation_name
+ '\n'
'#PBS -j oe\n'
'cd $PBS_O_WORKDIR\n'
'for i in {1..22}; do '
+ plink + ' --bfile ' + geno_name + ' --chr $i --hardy --hwe 0.01 --maf 0.05 --make-bed --out ' +
geno_name + '_MAF_HWE_Filter_chr$[i]\n'
+ 'java -Xmx1g -jar "' + harmonizer_path + '/GenotypeHarmonizer.jar" $* --input ' + geno_name +
'_MAF_HWE_Filter_chr$[i] --ref ' +
os.path.join(vcf_path,
'ALL.chr$[i].phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz') +
' --refType VCF --update-id --debug --mafAlign 0.1 --check-ld --variants 200 --min-variants 10'
' --update-reference-allele --outputType PLINK_BED --output ' + geno_name + '_chr$[i]_Harmonized\n'
+ 'rm ' + geno_name + '_MAF_HWE_Filter_chr$[i].*; done\n'
# Special handling of chrX
# Special handling for chrX: Make list of females
+ "awk -v OFS='\\t' '$5==2 {print $1, $2}' " + geno_name + '.fam > ' + geno_name +
'_Females.txt\n'
# Make hwe statistics just using the females
+ plink + ' --bfile ' + geno_name + ' --chr X --hardy --keep ' + geno_name + '_Females.txt --out ' +
geno_name + '_chr23\n'
# Get list of SNPs with HWE p-value < 0.01
+ 'awk \'$9<0.01 {print $2}\' ' + geno_name + '_chr23.hwe > ' + geno_name + '_chr23_RemHWE.txt\n'
# Remove these from plink file
+ plink + ' --bfile ' + geno_name + ' --chr X --maf 0.05 --exclude ' + geno_name +
'_chr23_RemHWE.txt --make-bed --out ' + geno_name + '_MAF_HWE_Filter_chr23\n'
# Use awk to replace 23 with X
+ "awk -v OFS='\\t' '{gsub(\"23\", \"X\", $1)}1' " + geno_name +
'_MAF_HWE_Filter_chr23.bim > chr23.tmp && mv chr23.tmp ' + geno_name + '_MAF_HWE_Filter_chr23.bim\n'
+ 'java -Xmx1g -jar "' + harmonizer_path + '/GenotypeHarmonizer.jar" $* --input ' + geno_name
+ '_MAF_HWE_Filter_chr23 --ref '
+ os.path.join(vcf_path,
'ALL.chrX.phase3_shapeit2_mvncall_integrated_v1b.20130502.genotypes.vcf.gz')
+ ' --refType VCF --update-id --debug --mafAlign 0.1 --check-ld --variants 200 --mind-variants 10'
' --update-reference-allele --outputType PLINK_BED --output ' + geno_name + '_chr23_Harmonized\n'
+ 'rm ' + geno_name + '_MAF_HWE_Filter_chr23.*\n'
+ 'rm ' + geno_name + '_chr23.*\n'
+ 'rm ' + geno_name + '_chr23_RemHWE.txt\n'
+ 'python harmonize_postprocess.py ' + geno_name + ' ' + legend_path + ' ' + fasta_path + '\n')
# Submit this job
subprocess.check_output(['qsub', geno_name + '_HarmonizeTo1000G.pbs'])
def local(geno_name, harmonizer_path, vcf_path, legend_path, fasta_path):
# Using 1000 Genomes as a reference(based off Perl script by W.Rayner, 2015, wrayner @ well.ox.ac.uk)
# -Removes SNPs with MAF < 5% in study dataset
# -Removes SNPs not in 1000 Genomes Phase 3
# -Removes all A/T G/C SNPs with MAF > 40% in the reference data set
# -Removes all SNPs with an AF difference >0.2, between reference and dataset frequency file, frequency file is
# expected to be a plink frequency file with the same number of SNPs as the bim file
# -Removes duplicates that may be introduced with the position update
# -Removes indels #Need to figure out how to do this. Or even if it is necessary with plink files.
# -Removes SNPs with HWE p-value < 0.01
# -Updates the reference allele to match 1000G
# -Outputs new files per chromosome, in plink bed/bim/fam format.
# Needed modules
import sys
import csv
import gzip
try:
import pandas as pd
except (ImportError, ModuleNotFoundError):
import genodownload
genodownload.getpandas()
import pandas as pd
try:
import numpy as np
except (ImportError, ModuleNotFoundError):
import genodownload
genodownload.getnumpy()
import numpy as np
# Get current working directory.
orig_wd = os.getcwd()
# Make new folder where the harmonized files will be located.
if not os.path.exists('Harmonized_To_1000G'):
os.makedirs('Harmonized_To_1000G')
# Copy genotype files to new folder.
shutil.copy2(geno_name + '.bed', 'Harmonized_To_1000G')
shutil.copy2(geno_name + '.bim', 'Harmonized_To_1000G')
shutil.copy2(geno_name + '.fam', 'Harmonized_To_1000G')
# Switch to this directory.
os.chdir('Harmonized_To_1000G')
# Make the lists that we're going to need, since this is on a per chromosome basis.
vcf_file_names = ['ALL.chr%d.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz' % x for x in
range(1, 23)]
vcf_file_names.extend(['ALL.chrX.phase3_shapeit2_mvncall_integrated_v1b.20130502.genotypes.vcf.gz'])
legend_file_names = ['1000GP_Phase3_chr%d.legend.gz' % x for x in range(1, 23)]
legend_file_names.extend(['1000GP_Phase3_chrX_NONPAR.legend.gz'])
harmonized_geno_names = [geno_name + '_chr%d_Harmonized' % x for x in range(1, 24)]
id_updates = [s + '_idUpdates.txt' for s in harmonized_geno_names]
id_update_names = [s + '_idUpdates.txt' for s in harmonized_geno_names]
snp_logs = [s + '_snpLog.log' for s in harmonized_geno_names]
snp_log_names = [s + '_snpLog.log' for s in harmonized_geno_names]
freq_file_names = [geno_name + '_chr%d_Harmonized.frq' % x for x in range(1, 24)]
af_diff_removed_by_chr = ['chr%d_SNPsRemoved_AFDiff' % x for x in range(1, 24)]
final_snps_by_chr = ['chr%d_SNPsKept' % x for x in range(1, 24)]
final_snp_lists = ['chr%d_SNPsKept.txt' % x for x in range(1, 24)]
af_checked_names = [geno_name + '_chr%d_HarmonizedTo1000G' % x for x in range(1, 24)]
# Harmonize for each chromosome
for i in range(0, len(vcf_file_names)):
# Call genotype harmonizer for autosomes
if i < 22:
# Remove SNPs with HWE p-value < 0.01 and SNPs with MAF < 0.05
subprocess.check_output([plink, '--bfile', geno_name, '--chr', str(i+1), '--hardy', '--hwe', '0.01',
'--maf', '0.05', '--make-bed', '--out',
geno_name + '_MAF_HWE_Filter_chr' + str(i+1)])
subprocess.check_output('java -Xmx1g -jar "' + harmonizer_path + '/GenotypeHarmonizer.jar" $* --input '
+ geno_name + '_MAF_HWE_Filter_chr' + str(i+1) + ' --ref "'
+ os.path.join(vcf_path, vcf_file_names[i])
+ '" --refType VCF --update-id --debug --mafAlign 0.1 --check-ld --variants 200 '
'--min-variants 10 --update-reference-allele --outputType PLINK_BED --output '
+ harmonized_geno_names[i], shell=True)
subprocess.call(rm + geno_name + '_MAF_HWE_Filter_chr' + str(i + 1) + '.*', shell=True)
id_updates[i] = pd.read_csv(id_update_names[i], sep='\t', header=0,
dtype={'chr': str, 'pos': int, 'originalId': str, 'newId': str})
snp_logs[i] = pd.read_table(snp_log_names[i], sep='\t', header=0,
dtype={'chr': str, 'pos': int, 'id': str, 'alleles': str, 'action': str,
'message': str})
elif i == 22:
# Special handling for chrX
# Make list of females
fam_file = pd.read_csv(geno_name + '.fam', sep=' ', header=None)
females = fam_file.loc[fam_file[4] == 2]
females[1].to_csv(geno_name + '_Females.txt', sep='\t', header=None, index=False)
# Make hwe statistics using just females
subprocess.check_output([plink, '--bfile', geno_name, '--chr', 'X', '--hardy', '--keep',
geno_name + '_Females.txt', '--out', geno_name + '_chr23'])
# Get list of SNPs with HWE p-values < 0.01
hwe = pd.read_csv(geno_name + '_chr23.hwe', sep='\t', header=None, skiprows=1)
hweremove = hwe.loc[hwe[8] <= 0.01]
hweremove[1].to_csv(geno_name + '_chr23_RemHWE.txt', sep='\t', header=None, index=False)
# Remove these from plink file
subprocess.check_output([plink, '--bfile', geno_name, '--chr', 'X', '--maf', '0.05', '--exclude',
geno_name + '_chr23_RemHWE.txt', '--make-bed', '--out',
geno_name + '_MAF_HWE_Filter_chr23'])
# Read chrX file into pandas
bim_file = pd.read_csv(geno_name + '_MAF_HWE_Filter_chr23.bim', sep='\t', header=None)
# Replace '23' with 'X', which is how genotype harmonizer calls X
bim_file.iloc[:, 0].replace(23, 'X', inplace=True)
# Write new genotype
bim_file.to_csv(geno_name + '_MAF_HWE_Filter_chr23.bim', sep='\t', header=False, index=False, na_rep='NA')
# Call genotype harmonizer for X chromosome
subprocess.check_output('java -Xmx1g -jar "' + harmonizer_path + '/GenotypeHarmonizer.jar" $* --input '
+ geno_name + '_MAF_HWE_Filter_chr23 --ref "'
+ os.path.join(vcf_path, vcf_file_names[i])
+ '" --refType VCF --update-id --debug --mafAlign 0.1 --check-ld --variants 200 '
'--min-variants 10 --update-reference-allele --outputType PLINK_BED --output '
+ harmonized_geno_names[i], shell=True)
subprocess.call(rm + geno_name + '_MAF_HWE_Filter_chr23.*', shell=True)
subprocess.call(rm + geno_name + '_chr23*', shell=True)
subprocess.call(rm + geno_name + '_chr23_RemHWE.txt*', shell=True)
id_updates[i] = pd.read_csv(id_update_names[i], sep='\t', header=0,
dtype={'chr': str, 'pos': int, 'originalId': str, 'newId': str})
snp_logs[i] = pd.read_csv(snp_log_names[i], sep='\t', header=0,
dtype={'chr': str, 'pos': int, 'id': str, 'alleles': str, 'action': str,
'message': str})
else:
print(Fore.RED + Style.BRIGHT)
sys.exit("Something is wrong with the number/name of reference files")
# Concatenate all of the id updates into one file.
all_id_updates = pd.concat([id_updates[0], id_updates[1], id_updates[2], id_updates[3], id_updates[4],
id_updates[5], id_updates[6], id_updates[7], id_updates[8], id_updates[9],
id_updates[10], id_updates[11], id_updates[12], id_updates[13], id_updates[14],
id_updates[15], id_updates[16], id_updates[17], id_updates[18], id_updates[19],
id_updates[20], id_updates[21], id_updates[22]])
# Write list to text file.
all_id_updates.to_csv('Harmonization_ID_Updates.txt', sep='\t', header=True, index=False)
# Remove the clutter
if os.path.getsize('Harmonization_ID_Updates.txt') > 0:
for f in id_update_names:
subprocess.call([rm, f])
all_snp_logs = pd.concat([snp_logs[0], snp_logs[1], snp_logs[2], snp_logs[3], snp_logs[4], snp_logs[5], snp_logs[6],
snp_logs[7], snp_logs[8], snp_logs[9], snp_logs[10], snp_logs[11], snp_logs[12],
snp_logs[13], snp_logs[14], snp_logs[15], snp_logs[16], snp_logs[17], snp_logs[18],
snp_logs[19], snp_logs[20], snp_logs[21], snp_logs[22]])
# Write list to text file.
all_snp_logs.to_csv('Harmonization_SNP_Logs.txt', sep='\t', header=True, index=False)
# Remove the clutter
if os.path.getsize('Harmonization_SNP_Logs.txt') > 0:
for f in snp_log_names:
subprocess.call([rm, f])
# Now for each that was just harmonized, remove all SNPs with an allele (AF) difference > 0.2 since we are going to
# use a global reference population between study dataset and all superpopulation allele frequencies. IF within 0.2
# of any superpopulation frequency, keep variant. Frequency file is expected to be a Plink frequency file with the
# same number of variants as the bim file.
for i in range(0, len(harmonized_geno_names)):
# Create plink file
subprocess.check_output([plink, '--bfile', harmonized_geno_names[i], '--freq', '--out',
harmonized_geno_names[i]])
# Read freq file into python
freq_file = pd.read_csv(freq_file_names[i], sep='\s+', header=0, usecols=[0, 1, 2, 3, 4],
dtype={'CHR': int, 'SNP': str, 'A1': str, 'A2': str, 'MAF': float})
# Rename columns of freq file.
freq_file.rename(columns={'A1': 'dataset_a1', 'A2': 'dataset_a2', 'MAF': 'dataset_a1_frq'}, inplace=True)
# Calculate the frequency of the second allele, since it's not given in the freq file.
freq_file['dataset_a2_frq'] = 1 - freq_file['dataset_a1_frq']
# Read in bim file.
bim_file = pd.read_csv(harmonized_geno_names[i] + '.bim', sep='\s+', header=None, usecols=[0, 1, 3],
names=['CHR', 'SNP', 'position'])
# Merge frequency file with bim file to get position for each SNP
freq_file_with_position = pd.merge(left=freq_file, right=bim_file, how='inner', on=['CHR', 'SNP'])
# Read in legend file.
legend_file = pd.read_csv(os.path.join(legend_path, legend_file_names[i]), compression="gzip", sep=" ",
header=0, dtype={'id': str, 'position': int, 'a0': str, 'a1': str, 'TYPE': str,
'AFR': float, 'AMR': float, 'EAS': float, 'EUR': float, 'SAS': float,
'ALL': float})
# Rename columns of legend file
legend_file.rename(columns={'id': 'reference_id', 'a0': 'reference_a0', 'a1': 'reference_a1'}, inplace=True)
# To Remove A/T or G/C SNPs in reference file that have an MAF > 40%, first identify which are AT/GC SNPs.
legend_file['ATGC_SNP'] = np.where(
((legend_file['reference_a0'] == 'A') & (legend_file['reference_a1'] == 'T')) |
((legend_file['reference_a0'] == 'T') & (legend_file['reference_a1'] == 'A')) |
((legend_file['reference_a0'] == 'C') & (legend_file['reference_a1'] == 'G')) |
((legend_file['reference_a0'] == 'G') & (legend_file['reference_a1'] == 'C')), 'ATGC', 'Fine')
# For each superpopulation, create a new column with the MAF. If the AF in that column is less than 0.5, then
# that is the MAF, if not then 1-AF is MAF
legend_file['AFR_MAF'] = np.where(legend_file['AFR'] < 0.5, legend_file['AFR'], 1 - legend_file['AFR'])
legend_file['AMR_MAF'] = np.where(legend_file['AMR'] < 0.5, legend_file['AMR'], 1 - legend_file['AMR'])
legend_file['EAS_MAF'] = np.where(legend_file['EAS'] < 0.5, legend_file['EAS'], 1 - legend_file['EAS'])
legend_file['EUR_MAF'] = np.where(legend_file['EUR'] < 0.5, legend_file['EUR'], 1 - legend_file['EUR'])
legend_file['SAS_MAF'] = np.where(legend_file['SAS'] < 0.5, legend_file['SAS'], 1 - legend_file['SAS'])
# Create column in legend file with decision about whether to keep or remove SNP, if it is an ATGC SNP where
# the MAF in all superpopulations is greater than 40%, then remove it.
legend_file['MAF_Decision'] = np.where((legend_file['ATGC_SNP'] == 'ATGC') & (legend_file['AFR_MAF'] > 0.4) &
(legend_file['AMR_MAF'] > 0.4) & (legend_file['EAS_MAF'] > 0.4) &
(legend_file['EUR_MAF'] > 0.4) & (legend_file['SAS_MAF'] > 0.4),
'Remove', 'Keep')
# Make new legend file with just the SNPs that pass this threshold.
legend_file = legend_file[legend_file['MAF_Decision'] == 'Keep']
legend_file.drop(labels=['ATGC_SNP', 'AFR_MAF', 'AMR_MAF', 'EAS_MAF', 'EUR_MAF', 'SAS_MAF', 'MAF_Decision'],
axis=1, inplace=True)
# Merge freq file with positions with legend file to get overlap. This file contains only SNPs with matches in
# 1000G
merged_file = pd.merge(left=freq_file_with_position, right=legend_file, how='inner', on='position')
merged_file = merged_file[merged_file['TYPE'] == 'Biallelic_SNP']
# The MAF column in the frq file is the allele frequency of the A1 allele (which is usually minor, but
# possibly not in my case because I just updated the reference to match 1000G.
# The AF columns in the legend file are the allele frequencies of the a1 allele in that file.
# Need to match based on A1 alleles (hopefully this has already been done in the harmonization step, then
# calculate the allele frequency difference.
# For each population group, match the alleles where they aren't flipped (i.e. in the same order in house and
# ref datasets..
merged_file['AFR_Match_Diff'] = np.where((merged_file['dataset_a1'] == merged_file['reference_a1']) &
(merged_file['dataset_a2'] == merged_file['reference_a0']),
abs(merged_file['dataset_a1_frq'] - merged_file['AFR']), '')
merged_file['AMR_Match_Diff'] = np.where((merged_file['dataset_a1'] == merged_file['reference_a1']) &
(merged_file['dataset_a2'] == merged_file['reference_a0']),
abs(merged_file['dataset_a1_frq'] - merged_file['AMR']), '')
merged_file['EAS_Match_Diff'] = np.where((merged_file['dataset_a1'] == merged_file['reference_a1']) &
(merged_file['dataset_a2'] == merged_file['reference_a0']),
abs(merged_file['dataset_a1_frq'] - merged_file['EAS']), '')
merged_file['EUR_Match_Diff'] = np.where((merged_file['dataset_a1'] == merged_file['reference_a1']) &
(merged_file['dataset_a2'] == merged_file['reference_a0']),
abs(merged_file['dataset_a1_frq'] - merged_file['EUR']), '')
merged_file['SAS_Match_Diff'] = np.where((merged_file['dataset_a1'] == merged_file['reference_a1']) &
(merged_file['dataset_a2'] == merged_file['reference_a0']),
abs(merged_file['dataset_a1_frq'] - merged_file['SAS']), '')
# For each population group, match the flipped alleles.
merged_file['AFR_FlipMatch_Diff'] = np.where((merged_file['dataset_a1'] == merged_file['reference_a0']) &
(merged_file['dataset_a2'] == merged_file['reference_a1']),
abs(merged_file['dataset_a2_frq'] - merged_file['AFR']), '')
merged_file['AMR_FlipMatch_Diff'] = np.where((merged_file['dataset_a1'] == merged_file['reference_a0']) &
(merged_file['dataset_a2'] == merged_file['reference_a1']),
abs(merged_file['dataset_a2_frq'] - merged_file['AMR']), '')
merged_file['EAS_FlipMatch_Diff'] = np.where((merged_file['dataset_a1'] == merged_file['reference_a0']) &
(merged_file['dataset_a2'] == merged_file['reference_a1']),
abs(merged_file['dataset_a2_frq'] - merged_file['EAS']), '')
merged_file['EUR_FlipMatch_Diff'] = np.where((merged_file['dataset_a1'] == merged_file['reference_a0']) &
(merged_file['dataset_a2'] == merged_file['reference_a1']),
abs(merged_file['dataset_a2_frq'] - merged_file['EUR']), '')
merged_file['SAS_FlipMatch_Diff'] = np.where((merged_file['dataset_a1'] == merged_file['reference_a0']) &
(merged_file['dataset_a2'] == merged_file['reference_a1']),
abs(merged_file['dataset_a2_frq'] - merged_file['SAS']), '')
# Add the nonflipped and flipped columns together to find out which files have an allele frequency
# difference > 0.2
merged_file['AFR_Diff'] = merged_file['AFR_Match_Diff'] + merged_file['AFR_FlipMatch_Diff']
merged_file['AMR_Diff'] = merged_file['AMR_Match_Diff'] + merged_file['AMR_FlipMatch_Diff']
merged_file['EAS_Diff'] = merged_file['EAS_Match_Diff'] + merged_file['EAS_FlipMatch_Diff']
merged_file['EUR_Diff'] = merged_file['EUR_Match_Diff'] + merged_file['EUR_FlipMatch_Diff']
merged_file['SAS_Diff'] = merged_file['SAS_Match_Diff'] + merged_file['SAS_FlipMatch_Diff']
# Delete these columns because we don't need them anymore
merged_file.drop(labels=['AFR_Match_Diff', 'AFR_FlipMatch_Diff', 'AMR_Match_Diff', 'AMR_FlipMatch_Diff',
'EAS_Match_Diff', 'EAS_FlipMatch_Diff', 'EUR_Match_Diff', 'EUR_FlipMatch_Diff',
'SAS_Match_Diff', 'SAS_FlipMatch_Diff'], axis=1, inplace=True)
# Make allele freuqency columns numeric.
merged_file[['AFR_Diff', 'AMR_Diff', 'EAS_Diff', 'EUR_Diff', 'SAS_Diff']] = \
merged_file[['AFR_Diff', 'AMR_Diff', 'EAS_Diff', 'EUR_Diff', 'SAS_Diff']].apply(pd.to_numeric,
errors='coerce')
# Make new column 'AF_Decision' where you remove alleles that have allele frequency differences > 0.2 from all
# population groups.
merged_file['AF_Decision'] = np.where((merged_file['AFR_Diff'] > 0.2) & (merged_file['AMR_Diff'] > 0.2) &
(merged_file['EAS_Diff'] > 0.2) & (merged_file['EUR_Diff'] > 0.2) &
(merged_file['SAS_Diff'] > 0.2), 'Remove', 'Keep')
# Drop duplicate SNPs
merged_file.drop_duplicates(subset=['SNP'], keep=False, inplace=True)
# Write file for each chromosome of the SNPs that we've removed in this step.
af_diff_removed_by_chr[i] = merged_file[merged_file['AF_Decision'] == 'Remove']
# Write list for each chromosome of final SNPs that we are keeping.
final_snps_by_chr[i] = merged_file[merged_file['AF_Decision'] == 'Keep']
# Write list for each chromosome, because we're going to use it to filter the chromosomes to create new files.
final_snps_by_chr[i]['SNP'].to_csv(final_snp_lists[i], sep='\t', header=False, index=False)
# Make plink files for each chromosomes. Need bed file for merging
subprocess.check_output([plink, '--bfile', harmonized_geno_names[i], '--extract', final_snp_lists[i],
'--make-bed', '--out', af_checked_names[i]])
# Remove extra files that we don't need anymore. These were files that were harmonized, but not checked for
# allele frequency differences.
if os.path.getsize(af_checked_names[i] + '.bim') > 0:
os.remove(final_snp_lists[i])
subprocess.call(rm + harmonized_geno_names[i] + '.*', shell=True)
# Done with one chromosome.
print('Finished with chr' + str(i + 1))
# Make a big list of all SNPs removed and all SNPs kept just for reference purposes.
all_snps_removed = pd.concat([af_diff_removed_by_chr[0], af_diff_removed_by_chr[1], af_diff_removed_by_chr[2],
af_diff_removed_by_chr[3], af_diff_removed_by_chr[4], af_diff_removed_by_chr[5],
af_diff_removed_by_chr[6], af_diff_removed_by_chr[7], af_diff_removed_by_chr[8],
af_diff_removed_by_chr[9], af_diff_removed_by_chr[10], af_diff_removed_by_chr[11],
af_diff_removed_by_chr[12], af_diff_removed_by_chr[13], af_diff_removed_by_chr[14],
af_diff_removed_by_chr[15], af_diff_removed_by_chr[16], af_diff_removed_by_chr[17],
af_diff_removed_by_chr[18], af_diff_removed_by_chr[19], af_diff_removed_by_chr[20],
af_diff_removed_by_chr[21], af_diff_removed_by_chr[22]])
# Write list to text file.
all_snps_removed.to_csv('SNPs_Removed_AFCheck.txt', sep='\t', header=True, index=False)
# Make one big list of all SNPs kept
all_snps_kept = pd.concat([final_snps_by_chr[0], final_snps_by_chr[1], final_snps_by_chr[2],
final_snps_by_chr[3], final_snps_by_chr[4], final_snps_by_chr[5],
final_snps_by_chr[6], final_snps_by_chr[7], final_snps_by_chr[8],
final_snps_by_chr[9], final_snps_by_chr[10], final_snps_by_chr[11],
final_snps_by_chr[12], final_snps_by_chr[13], final_snps_by_chr[14],
final_snps_by_chr[15], final_snps_by_chr[16], final_snps_by_chr[17],
final_snps_by_chr[18], final_snps_by_chr[19], final_snps_by_chr[20],
final_snps_by_chr[21], final_snps_by_chr[22]])
# Write this list to a text file.
all_snps_kept.to_csv('SNPs_Kept_AFCheck.txt', sep='\t', header=True, index=False)
# Merge harmonized dataset genotypes
with open("HouseMergeList.txt", "w") as f:
wr = csv.writer(f, delimiter="\n")
wr.writerow(af_checked_names)
subprocess.check_output([plink, '--merge-list', 'HouseMergeList.txt', '--geno', '0.01', '--make-bed', '--out',
geno_name + '_HarmonizedTo1000G'])
if os.path.getsize(geno_name + '_HarmonizedTo1000G.bim') > 0:
for i in range(0, len(af_checked_names)):
subprocess.call(rm + str(af_checked_names[i]) + '.*', shell=True)
else:
print(Fore.RED + Style.BRIGHT)
sys.exit("For some reason the house gentoypes did not merge. You should try it manually. Then, you will need "
"to use the program snpflip to make sure the snps are on the same strand as the reference.")
# Check to make sure the snps are on the same strand as the reference
# First need to change the chromosome names to match the fasta file so they can match.
# Read chrX file into pandas
bim_file = pd.read_csv(geno_name + '_HarmonizedTo1000G.bim', sep='\t', header=None,
dtype={0: str, 1: str, 2: int, 3: int, 4: str, 5: str})
# Replace '23' with 'X', which is how the fasta file calls X
bim_file.iloc[:, 0].replace('23', 'X', inplace=True)
# Replace '24' with 'Y', which is how the fasta file calls Y
bim_file.iloc[:, 0].replace('24', 'Y', inplace=True)
# Replace '26' with 'MT' which is how the fasta file calls the mitochondrial DNA
bim_file.iloc[:, 0].replace('26', 'MT', inplace=True)
# Write new genotype
bim_file.to_csv(geno_name + '_HarmonizedTo1000G.bim', sep='\t', header=False, index=False, na_rep='NA')
# Fasta file needs to be unzipped for snpflip to work.
if os.path.exists(os.path.join(fasta_path, 'human_g1k_v37.fasta')):
pass
elif os.path.exists(os.path.join(fasta_path, 'human_g1k_v37.fasta.gz')):
try:
with gzip.open(os.path.join(fasta_path, 'human_g1k_v37.fasta.gz'), 'rb') as f_in, \
open(os.path.join(fasta_path, 'human_g1k_v37.fasta'), 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
except:
if system_check in ("Linux", "Darwin"):
os.system('gunzip -c ' + os.path.join(fasta_path, 'human_g1k_v37.fasta.gz') + ' > '
+ os.path.join(fasta_path, 'human_g1k_v37.fasta'))
elif system_check == "Windows":
zip_path = []
for r, d, f in os.walk(os.path.join('C:\\', 'Program Files')):
for files in f:
if files == "7zG.exe":
zip_path = os.path.join(r, files)
subprocess.check_output([zip_path, 'e', os.path.join(fasta_path, 'human_gik_v37.fasta.gz')])
else:
sys.exit("Quitting because I cannot find the fasta file. You must have this for snpflip to run.")
# Determine if they have snpflip, if not download it.
if os.path.exists(os.path.join(bindir, 'snpflip')):
pass
else:
import genodownload
genodownload.snpflip()
snpflip_path = [os.path.join(bindir, 'snpflip')]
# Perform flip check.
subprocess.check_output('python ' + snpflip_path[0] + ' --fasta-genome "'
+ os.path.join(fasta_path, 'human_g1k_v37.fasta')
+ '" --bim-file ' + geno_name + '_HarmonizedTo1000G.bim --output-prefix ' + geno_name
+ '_HarmonizedTo1000G', shell=True)
# If SNPs exist that are on the reverse strand, then flip them.
# Currently ignores snps that are ambiguous, since I already removed those that would be hard to phase. Could change
# this later.
if os.path.getsize(geno_name + '_HarmonizedTo1000G.reverse') > 0:
subprocess.check_output([plink, '--bfile', geno_name + '_HarmonizedTo1000G', '--flip',
geno_name + '_HarmonizedTo1000G.reverse', '--make-bed', '--out',
geno_name + '_HarmonizedTo1000G_StrandChecked'])
# If .reverse doesn't exist, still make a new file to signify that you've done the strand check.
else:
subprocess.check_output([plink, '--bfile', geno_name + '_HarmonizedTo1000G', '--make-bed', '--out',
geno_name + '_HarmonizedTo1000G_StrandChecked'])
# Finished
shutil.copy2(geno_name + '_HarmonizedTo1000G_StrandChecked.bed', orig_wd)
shutil.copy2(geno_name + '_HarmonizedTo1000G_StrandChecked.bim', orig_wd)
shutil.copy2(geno_name + '_HarmonizedTo1000G_StrandChecked.fam', orig_wd)
print("Finished with harmonization")