-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
52 lines (48 loc) · 1.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""
Justin Baum
20 October 2020
utils.py
Utilities
"""
# pylint: disable=invalid-name
def general_linear_congruence(a : int, modulus : int, k : int) -> int:
"""
Linear Congruence Solver
Extended Euclidean Algorithm
a*x === (cong) k mod m
"""
original_modulus = modulus
y = 0
x = k
if modulus <= 1:
return 0
while a > 1:
# I have never run into this being run
# But because pypy compiles this, it gets upset
if modulus == 0: return
quotient = a // modulus
(a, modulus) = (modulus, a % modulus)
(x,y) = (y, x - quotient * y)
return x % original_modulus
def multiplicative_inverse(a : int, modulus : int) -> int:
"""
Multiplicative inverse
a*x === (congruent) 1 mod modulus
"""
return general_linear_congruence(a, modulus, 1)
def eulers_criterion(a: int, p : int):
"""
https://en.wikipedia.org/wiki/Euler%27s_criterion
Does a solution exist for x^2 = a mod p?
Only when p is prime
"""
if a == 0:
return True
return pow(a, (p-1)//2, p) == 1
def factors(n):
"""
Generate factors
"""
for i in range(2, n//2 + 1):
if n % i == 0:
yield i