From 65dd913a6eb40b24bdc982101b521aab63ffc5d3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jan=20van=20Br=C3=BCgge?= Date: Fri, 13 Sep 2024 12:40:04 +0200 Subject: [PATCH] WIP: Automate new fixpoint proofs --- Tools/mrbnf_fp.ML | 261 +++++++++++++++++++++++++++++++++++++++++----- thys/MRBNF_FP.thy | 3 +- 2 files changed, 235 insertions(+), 29 deletions(-) diff --git a/Tools/mrbnf_fp.ML b/Tools/mrbnf_fp.ML index e75f5b42..fb800e55 100644 --- a/Tools/mrbnf_fp.ML +++ b/Tools/mrbnf_fp.ML @@ -26,7 +26,7 @@ struct open MRBNF_Util infix 0 RSS -fun RSS (thms, thm) = map (fn x => x RS thm) thms; +fun op RSS (thms, thm) = map (fn x => x RS thm) thms; fun define_fp_consts fp_kind mrbnf_ks (binding_relation : (int list * int list) list list) lthy = let @@ -92,8 +92,18 @@ fun define_fp_consts fp_kind mrbnf_ks (binding_relation : (int list * int list) } end ) T_sugars, lthy) end; - val (vars as ((((((fs, raw_xs), raw_ys), aa), As), raw_zs), raw_zs'), _) = lthy + val rec_boundsss = map (fn rels => map (fn i => + @{map_filter 2} (fn j => fn rel => + if member (op=) rel i then SOME j else NONE + ) (0 upto length rels - 1) rels + ) (0 upto nrecs - 1)) binding_relation; + + val (vars as (((((((fs, hss), raw_xs), raw_ys), aa), As), raw_zs), raw_zs'), _) = lthy |> mk_Frees "f" (map (fn a => a --> a) frees) + ||>> mk_Freess "h" (@{map 3} (fn a => fn rels => map_filter (fn xs => + let val n = length xs + in if n > 0 andalso n < length rels then SOME (a --> a) else NONE end + )) frees binding_relation rec_boundsss) ||>> mk_Frees "x" (map (fst o dest_funT o fastype_of o #ctor) raw_Ts) ||>> mk_Frees "y" (map (fst o dest_funT o fastype_of o #ctor) raw_Ts) ||>> mk_Frees "a" frees @@ -211,6 +221,12 @@ fun define_fp_consts fp_kind mrbnf_ks (binding_relation : (int list * int list) ) aa preds) ) T_names (transpose (map #preds is_freess)) raw_zs lthy; + val nbounds = map length (hd bound_setsss); + val rec_bound_fss = @{map 4} (fn nbound => fn f => fn rec_boundss => fst o fold_map (fn rec_bounds => fn hs => + if length rec_bounds = 0 then (NONE, hs) + else if length rec_bounds = nbound then (SOME f, hs) else (SOME (hd hs), tl hs) + ) rec_boundss) nbounds fs rec_boundsss hss; + val live_Ts = plives @ replicate_rec (map #T raw_Ts); val (alphas, lthy) = let @@ -218,28 +234,45 @@ fun define_fp_consts fp_kind mrbnf_ks (binding_relation : (int list * int list) val intros = @{map 9} (fn x => fn y => fn alpha => fn bsetss => fn bfsetss => fn rec_sets => fn deads => fn mrbnf => fn raw => let - val id_on_prems = @{map 6} (fn f => fn bsets => fn bfsets => fn rels => fn bfree_boundss => fn FVars_raws => mk_id_on (foldl1 mk_Un ( + val id_on_prems = @{map 6} (fn f => fn bsets => fn bfsets => fn bfree_boundss => fn rec_boundss => fn FVars_raws => mk_id_on (foldl1 mk_Un ( map2 (fn bfset => fn bfree_bounds => mk_minus (bfset $ x, foldl1 mk_Un (map (fn i => nth bsets i $ x) bfree_bounds)) ) bfsets bfree_boundss - @ @{map_filter 3} (fn i => fn rec_set => fn FVars_raw => if not (member (op=) (flat rels) i) then NONE else - SOME (mk_minus (mk_UNION (rec_set $ x) (fst FVars_raw), foldl1 mk_Un (@{map_filter 2} (fn rel => fn bset => - if member (op=) rel i then SOME (bset $ x) else NONE - ) rels bsets))) - ) (0 upto nrecs - 1) rec_sets (replicate_rec FVars_raws) - )) f) fs bsetss bfsetss binding_relation bfree_boundsss (transpose FVars_rawss); + @ @{map_filter 3} (fn rec_set => fn rec_bounds => fn FVars_raw => + if length rec_bounds = length bsets then + SOME (mk_minus (mk_UNION (rec_set $ x) (fst FVars_raw), foldl1 mk_Un (map (fn s => s $ x) bsets))) + else NONE + ) rec_sets rec_boundss (replicate_rec FVars_raws) + )) f) fs bsetss bfsetss bfree_boundsss rec_boundsss (transpose FVars_rawss); + + val h_prems = flat (flat (@{map 5} (fn f => fn bsets => fn rec_boundss => fn FVars_raws => fn hs => + fst (@{fold_map 3} (fn rec_bounds => fn rec_set => fn FVars_raw => fn hs => + let val n = length rec_bounds + in if n > 0 andalso n < length bsets then + let + val h = hd hs; + val bset = foldl1 mk_Un (map (fn i => nth bsets i $ x) rec_bounds); + in (map HOLogic.mk_Trueprop [ + mk_bij h, + mk_supp_bound h, + mk_id_on (mk_minus (mk_UNION (rec_set $ x) (fst FVars_raw), bset)) h, + mk_eq_on bset h f + ], tl hs) end + else ([], hs) end + ) rec_boundss rec_sets (replicate_rec FVars_raws) hs)) fs bsetss rec_boundsss (transpose FVars_rawss) hss)); val mr_rel_prem = Term.list_comb ( MRBNF_Def.mk_mr_rel_of_mrbnf deads live_Ts live_Ts bounds (frees @ pfrees @ bfrees) mrbnf, map HOLogic.id_const (frees @ pfrees) @ map HOLogic.eq_const plives @ bound_fs @ bfree_fs - @ @{map 4} (fn i => fn alpha => fn permute => fn raw => - if not (member (op=) (flat (flat binding_relation)) i) then alpha else - Term.abs ("x", #T raw) (alpha $ (Term.list_comb (fst permute, map2 (fn rels => fn f => - if member (op=) (flat rels) i then f else HOLogic.id_const (fst (dest_funT (fastype_of f))) - ) binding_relation fs) $ Bound 0)) - ) (0 upto nrecs - 1) (replicate_rec alphas) (replicate_rec raw_permutes) (replicate_rec raw_Ts) + @ @{map 4} (fn rec_fs => fn alpha => fn permute => fn raw => + if null (map_filter I rec_fs) then alpha else Term.abs ("x", #T raw) (alpha $ ( + Term.list_comb (fst permute, map2 (fn f => + (fn SOME h => h | NONE => HOLogic.id_const (fst (dest_funT (fastype_of f)))) + ) fs rec_fs) $ Bound 0 + )) + ) (transpose rec_bound_fss) (replicate_rec alphas) (replicate_rec raw_permutes) (replicate_rec raw_Ts) ) $ x $ y; - in fold_rev (curry Logic.mk_implies) (f_prems @ map HOLogic.mk_Trueprop (id_on_prems @ [mr_rel_prem])) ( + in fold_rev (curry Logic.mk_implies) (f_prems @ map HOLogic.mk_Trueprop id_on_prems @ h_prems @ [HOLogic.mk_Trueprop mr_rel_prem]) ( HOLogic.mk_Trueprop (alpha $ (#ctor raw $ x) $ (#ctor raw $ y)) ) end ) raw_xs raw_ys alphas bound_setsss bfree_setsss rec_setss deadss mrbnfs raw_Ts; @@ -402,7 +435,7 @@ fun define_fp_consts fp_kind mrbnf_ks (binding_relation : (int list * int list) fun construct_binder_fp fp_kind mrbnf_ks binding_relation lthy = let - val ((((((frees, pfrees), plives), pbounds), deadss), ((((((fs, raw_xs), raw_ys), aa), As), raw_zs), raw_zs'), ((xs, ts), zs)), + val ((((((frees, pfrees), plives), pbounds), deadss), (((((((fs, hss), raw_xs), raw_ys), aa), As), raw_zs), raw_zs'), ((xs, ts), zs)), (bounds, bfrees, bound_fs, bfree_fs), bfree_boundsss, raw_permutes, is_freess, FVars_rawss, alphas, raw_avoids, quots, raw_Ts, TT_abss, TT_reps, ctors, permutes, FVarsss, avoids, subshapes, raw_noclashs, noclashs, @@ -510,6 +543,7 @@ fun construct_binder_fp fp_kind mrbnf_ks binding_relation lthy = val raw_setss = mk_setss (map #T raw_Ts); val (raw_fsetss, raw_bound_setsss, raw_bfree_setsss, raw_rec_setss) = split_setss raw_setss; + val num_bfreess = map (map length) raw_bfree_setsss; val rec_boundsss = map (fn rels => map (fn i => @{map_filter 2} (fn j => fn rel => @@ -710,11 +744,11 @@ fun construct_binder_fp fp_kind mrbnf_ks binding_relation lthy = REPEAT_DETERM o rtac ctxt exI, REPEAT_DETERM o EVERY' [ rtac ctxt conjI, - resolve_tac ctxt @{thms refl supp_id_bound bij_id id_on_id} + resolve_tac ctxt @{thms refl supp_id_bound bij_id id_on_id eq_on_refl} ], - K (Local_Defs.unfold0_tac ctxt ([ - MRBNF_Def.mr_rel_def_of_mrbnf mrbnf, MRBNF_Def.map_id_of_mrbnf mrbnf - ] @ raw_permute_ids)), + K (Local_Defs.unfold0_tac ctxt ( + (MRBNF_Def.mr_rel_id_of_mrbnf mrbnf RS sym) :: raw_permute_ids + )), rtac ctxt (MRBNF_Def.rel_refl_strong_of_mrbnf mrbnf), REPEAT_DETERM o resolve_tac ctxt @{thms refl disjI1} ]) raw_Ts mrbnfs) @@ -751,15 +785,20 @@ fun construct_binder_fp fp_kind mrbnf_ks binding_relation lthy = hyp_subst_tac ctxt, K (Local_Defs.unfold0_tac ctxt @{thms triv_forall_equality}), Subgoal.FOCUS_PARAMS (fn {context=ctxt, params, ...} => - let val (((fs, gs), hs), _) = map (Thm.term_of o snd) params + let val ((((fs, gs), hs), fs'), _) = map (Thm.term_of o snd) params |> chop nvars ||>> chop nvars - ||>> chop nvars; + ||>> chop nvars + ||>> chop (length (flat hss)) o drop 1; + val fss' = fst (fold_map (chop o length) hss fs'); in EVERY1 [ EVERY' (@{map 3} (fn f => fn g => fn h => rtac ctxt (infer_instantiate' ctxt [NONE, SOME (Thm.cterm_of ctxt (foldl1 HOLogic.mk_comp [g, h, mk_inv f])) ] exI)) fs gs hs), rtac ctxt exI, + EVERY' (flat (@{map 3} (fn f => fn g => map (fn f' => rtac ctxt (infer_instantiate' ctxt [NONE, + SOME (Thm.cterm_of ctxt (foldl1 HOLogic.mk_comp [g, f', mk_inv f])) + ] exI))) fs gs fss')), rtac ctxt exI, REPEAT_DETERM o EVERY' [ rtac ctxt conjI, @@ -788,14 +827,13 @@ fun construct_binder_fp fp_kind mrbnf_ks binding_relation lthy = assume_tac ctxt ], K (Local_Defs.unfold0_tac ctxt @{thms image_Un[symmetric]}), - EVERY' (map (fn g => EVERY' [ + EVERY' (map (fn g => REPEAT_DETERM o EVERY' [ rtac ctxt conjI, rtac ctxt @{thm id_onI}, etac ctxt imageE, hyp_subst_tac ctxt, - rtac ctxt trans, - rtac ctxt @{thm comp_apply}, - EqSubst.eqsubst_tac ctxt [0] @{thms inv_simp1}, + rtac ctxt @{thm trans[OF comp_apply]}, + rtac ctxt @{thm trans[OF arg_cong[OF inv_simp1]]}, assume_tac ctxt, rtac ctxt @{thm trans[OF comp_apply]}, rtac ctxt trans, @@ -810,7 +848,20 @@ fun construct_binder_fp fp_kind mrbnf_ks binding_relation lthy = TRY o etac ctxt @{thm UN_E}, eresolve_tac ctxt (flat FVars_intross), REPEAT_DETERM o assume_tac ctxt - ] + ], + REPEAT_DETERM o (EVERY' [ + rtac ctxt conjI, + REPEAT_DETERM1 o FIRST' [ + resolve_tac ctxt (infinite_UNIV :: @{thms bij_comp supp_comp_bound bij_imp_bij_inv supp_inv_bound}), + assume_tac ctxt + ] + ] ORELSE' EVERY' [ + rtac ctxt conjI, + rtac ctxt @{thm eq_on_comp2[OF eq_on_refl]}, + SELECT_GOAL (Local_Defs.unfold0_tac ctxt @{thms image_comp inv_o_simp1 image_id}), + rtac ctxt @{thm eq_on_comp2[OF _ eq_on_refl]}, + assume_tac ctxt + ]) ]) gs), rtac ctxt (iffD2 OF [hd (MRBNF_Def.mr_rel_map_of_mrbnf mrbnf)]), REPEAT_DETERM o FIRST' [ @@ -962,6 +1013,160 @@ fun construct_binder_fp fp_kind mrbnf_ks binding_relation lthy = assume_tac ctxt ]; + val mr_rel_set_livess = map (fn mrbnf => cond_keep (MRBNF_Def.mr_rel_set_of_mrbnf mrbnf) + (map (curry (op=) MRBNF_Def.Live_Var) (MRBNF_Def.var_types_of_mrbnf mrbnf)) + ) mrbnfs; + + val _ = @{print} rec_boundsss + + val rec_idxsss = map (fn i => + map (fn ys => + fst (fold_map (fn xs => fn n => if member (op=) xs i then (~1, n) else (n, n+1)) ys 1) + ) rec_boundsss + ) (0 upto nvars - 1); + val _ = @{print} rec_idxsss + + val alpha_FVars_leqss = transpose (@{map 5} (fn a => fn is_frees => fn FVarss => fn num_bfrees => fn rec_idxss => + let + fun mk_goal flipped = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj ( + @{map 5} (fn z => fn z' => fn alpha => fn is_free => fn FVars => HOLogic.mk_imp ( + is_free $ a $ z, mk_all (dest_Free z') (HOLogic.mk_imp ( + if flipped then alpha $ z' $ z else alpha $ z $ z', + HOLogic.mk_mem (a, fst FVars $ z') + )) + )) raw_zs raw_zs' (#preds alphas) (#preds is_frees) FVarss + )); + + fun mk_thm flipped = Goal.prove_sorry lthy (names (a :: raw_zs)) [] (mk_goal flipped) (fn {context=ctxt, ...} => EVERY1 [ + if n > 1 then rtac ctxt (#induct is_frees) + else rtac ctxt impI THEN' etac ctxt (#induct is_frees), + EVERY' (@{map 6} (fn alpha_elim => fn raw => fn mrbnf => fn mr_rel_set_lives => fn num_bfree => fn rec_idxs => EVERY' [ + REPEAT_DETERM o EVERY' [ + REPEAT_DETERM o resolve_tac ctxt [allI, impI], + etac ctxt alpha_elim, + dtac ctxt (iffD1 OF [#inject raw]), + hyp_subst_tac ctxt, + TRY o EVERY' [ + dtac ctxt @{thm DiffI[rotated]}, + assume_tac ctxt, + etac ctxt @{thm thin_rl}, + rotate_tac ~1, + dtac ctxt @{thm iffD1[OF arg_cong2[OF refl, of _ _ "(\)", OF id_on_image[symmetric]], rotated -1]}, + K (prefer_tac 2), + dtac ctxt @{thm iffD1[OF arg_cong2[OF refl, of _ _ "(\)", OF image_set_diff[OF bij_is_inj]], rotated -1]}, + K (prefer_tac 2) + ], + dtac ctxt (Drule.rotate_prems ~1 (iffD2 OF [MRBNF_Def.mr_rel_flip_of_mrbnf mrbnf])), + REPEAT_DETERM o (resolve_tac ctxt @{thms bij_id supp_id_bound} ORELSE' assume_tac ctxt), + K (Local_Defs.unfold0_tac ctxt @{thms inv_id}), + rotate_tac ~2, + dtac ctxt @{thm iffD1[OF arg_cong2[OF refl, of _ _ "(\)"], rotated -1]}, + TRY o rtac ctxt @{thm arg_cong2[of _ _ _ _ minus]}, + REPEAT_DETERM o EVERY' [ + TRY o rtac ctxt @{thm arg_cong[of _ _ "(`) _"]}, + eresolve_tac ctxt (map (Drule.rotate_prems ~1) (MRBNF_Def.mr_rel_set_of_mrbnf mrbnf)), + REPEAT_DETERM o FIRST' [ + resolve_tac ctxt @{thms bij_id supp_id_bound bij_imp_bij_inv supp_inv_bound}, + assume_tac ctxt + ] + ], + K (Local_Defs.unfold0_tac ctxt @{thms image_comp}), + REPEAT_DETERM o EVERY' [ + EqSubst.eqsubst_asm_tac ctxt [0] @{thms inv_o_simp2}, + assume_tac ctxt + ], + K (Local_Defs.unfold0_tac ctxt @{thms image_id}), + TRY o etac ctxt @{thm DiffE}, + eresolve_tac ctxt (flat (flat FVars_raw_introsss)), + TRY o EVERY' [ + assume_tac ctxt, + assume_tac ctxt, + id_on_tac ctxt + ] + ], + EVERY' (map (fn i => EVERY' [ + REPEAT_DETERM o resolve_tac ctxt [allI, impI], + etac ctxt alpha_elim, + dtac ctxt (iffD1 OF [#inject raw]), + hyp_subst_tac ctxt, + forward_tac ctxt (map (Drule.rotate_prems ~1) mr_rel_set_lives), + K (prefer_tac (MRBNF_Def.free_of_mrbnf mrbnf + 2 * MRBNF_Def.bound_of_mrbnf mrbnf + 1)), + assume_tac ctxt, + REPEAT_DETERM o (resolve_tac ctxt @{thms bij_id supp_id_bound} ORELSE' assume_tac ctxt), + etac ctxt bexE, + TRY o EVERY' [ + dresolve_tac ctxt (map (fn thm => Drule.rotate_prems ~1 (iffD1 OF [thm])) alpha_bij_eq_invs), + REPEAT_DETERM o (resolve_tac ctxt @{thms bij_id supp_id_bound} ORELSE' assume_tac ctxt) + ], + K (Local_Defs.unfold0_tac ctxt @{thms inv_id}), + etac ctxt allE, + etac ctxt impE, + assume_tac ctxt, + TRY o EVERY' [ + EqSubst.eqsubst_asm_tac ctxt [0] (flat FVars_raw_permutes), + REPEAT_DETERM o FIRST' [ + resolve_tac ctxt @{thms supp_id_bound bij_id bij_imp_bij_inv supp_inv_bound}, + assume_tac ctxt + ], + forward_tac ctxt @{thms arg_cong2[OF refl, of _ _ "(\)", THEN iffD1, rotated -1]}, + dtac ctxt (Drule.rotate_prems ~1 (iffD2 OF [MRBNF_Def.mr_rel_flip_of_mrbnf mrbnf])), + REPEAT_DETERM o FIRST' [ + resolve_tac ctxt (infinite_UNIV :: @{thms bij_id supp_id_bound bij_comp bij_imp_bij_inv supp_comp_bound supp_inv_bound}), + assume_tac ctxt + ], + REPEAT_DETERM o EVERY' [ + eresolve_tac ctxt (map (Drule.rotate_prems ~1) (MRBNF_Def.mr_rel_set_of_mrbnf mrbnf)), + REPEAT_DETERM o FIRST' [ + resolve_tac ctxt (infinite_UNIV :: @{thms bij_id supp_id_bound bij_comp bij_imp_bij_inv supp_comp_bound supp_inv_bound}), + assume_tac ctxt + ] + ], + rotate_tac ~1, + EqSubst.eqsubst_asm_tac ctxt [0] @{thms image_in_bij_eq}, + REPEAT_DETERM o (resolve_tac ctxt @{thms bij_comp bij_imp_bij_inv} ORELSE' assume_tac ctxt), + EqSubst.eqsubst_asm_tac ctxt [0] @{thms inv_inv_eq}, + REPEAT_DETERM o (resolve_tac ctxt @{thms bij_comp bij_imp_bij_inv} ORELSE' assume_tac ctxt), + etac ctxt imageE, + hyp_subst_tac ctxt, + K (Local_Defs.unfold0_tac ctxt @{thms inv_simp1 inv_simp2}), + rtac ctxt @{thm arg_cong2[OF _ refl, of _ _ "(\)", THEN iffD2]}, + rtac ctxt @{thm id_on_inv[THEN id_onD, rotated]}, + assume_tac ctxt, + K (@{print} i ; print_tac ctxt "bar") + ], + eresolve_tac ctxt (flat (flat FVars_raw_introsss)), + REPEAT_DETERM o assume_tac ctxt, + K (print_tac ctxt "foo") + ]) rec_idxs) + ]) (#elims alphas) raw_Ts mrbnfs mr_rel_set_livess num_bfrees rec_idxss) + ]); + val thm1 = mk_thm false; + in [] end + ) aa is_freess (transpose FVars_rawss) (transpose num_bfreess) rec_idxsss); + + val alpha_FVars_leqss = @{map 5} (fn z => fn z' => fn alpha => + @{map 3} (fn a => fn FVars => fn is_free => + let + fun mk_goal flipped = Logic.mk_implies (apply2 HOLogic.mk_Trueprop ( + is_free $ a $ z, + mk_all (dest_Free z') (HOLogic.mk_imp ( + if flipped then alpha $ z' $ z else alpha $ z $ z', + HOLogic.mk_mem (a, fst FVars $ z') + )) + )) + val thm1 = Goal.prove_sorry lthy (names [a, z]) [] (mk_goal false) (fn {context=ctxt, ...} => EVERY1 [ + + K (print_tac ctxt "foo") + ]); + val _ = @{print} (Thm.cterm_of lthy (mk_goal true)) + in () end + ) aa + ) raw_zs raw_zs' (#preds alphas) FVars_rawss (transpose (map #preds is_freess)) + + + val _ = @{print} alpha_FVars_leqss + val _ = error "bar" + val live = MRBNF_Def.live_of_mrbnf (hd mrbnfs); val alpha_FVarss = map (MRBNF_Util.split_conj nvars) (split_conj (Goal.prove_sorry lthy (names raw_zs) [] (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj ( diff --git a/thys/MRBNF_FP.thy b/thys/MRBNF_FP.thy index d12e80b2..cde064fe 100644 --- a/thys/MRBNF_FP.thy +++ b/thys/MRBNF_FP.thy @@ -335,10 +335,11 @@ lemma id_on_comp: "id_on A f \ id_on A g \ id_on (*ML_file \../Tools/mrbnf_fp_tactics.ML\*) ML_file \../Tools/mrbnf_fp_def_sugar.ML\ -ML_file \../Tools/mrbnf_fp.ML\ +(*ML_file \../Tools/mrbnf_fp.ML\ ML_file \../Tools/mrbnf_recursor_tactics.ML\ ML_file \../Tools/mrbnf_recursor.ML\ +*) lemma extend_fresh: fixes A B::"'a set"