-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathJESUSCHRIST.py
109 lines (92 loc) · 3.25 KB
/
JESUSCHRIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import cv2
import numpy as np
import os
import random
# noise removal
def remove_noise(image):
return cv2.medianBlur(image,3)
def thresholding(image):
return cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)[1]
#dilation
def dilate(image):
kernel = np.ones((5,5),np.uint8)
return cv2.dilate(image, kernel, iterations = 1)
#erosion
def erode(image):
kernel = np.ones((5,5),np.uint8)
return cv2.erode(image, kernel, iterations = 1)
#opening - erosion followed by dilation
def opening(image):
kernel = np.ones((5,5),np.uint8)
return cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
#canny edge detection
def canny(image):
return cv2.Canny(image, 100, 200)
def deskew(image):
coords = np.column_stack(np.where(image > 0))
angle = cv2.minAreaRect(coords)[-1]
if angle < -45:
angle = -(90 + angle)
else:
angle = -angle
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
return rotated
def get_data_mat(dir):
X = []
y = []
filenames=[]
k=0
files = os.listdir(dir)
random.shuffle(files)
for file in files:
if file[-3:] == 'jpg':
word = file[-9:][:5]
print(word)
img = cv2.imread(os.path.join(dir, file))
#1_Thresholding
th, img = cv2.threshold(img, 110, 255, cv2.THRESH_TOZERO)
th, img = cv2.threshold(img, 110, 255, cv2.THRESH_BINARY_INV)
img = remove_noise(img)
kernel1 = np.ones((2,2),np.uint8)
kernel2 = np.ones((2,2),np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow("1)black and whited",img)
img = remove_noise(img)
img = cv2.dilate(img,kernel1,iterations = 1)
cv2.imshow("2)dilated",img)
#img = cv2.erode(img,kernel1,iterations = 1)
#cv2.imshow("2)eroded",img)
img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel2)
cv2.imshow("3)opened",img)
img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel2)
cv2.imshow("4)closed",img)
#print(img.shape)
img = canny(img)
cv2.imshow("6)canny",img)
img = 255-img
cv2.imshow("7)img",img)
for i in range(5):
imgs=img[:,30*i:30*(i+1)]
cv2.imwrite("hooroof/"+word[i]+"_"+str(random.randint(0,4000))+".jpg",imgs)
#cv2.imshow(str(i),imgs)
#return
#cv2.imwrite("captchas2/"+file,img)
continue
img = img.reshape((img.shape[0]*img.shape[1],))
img = img / 255.
X.append(img)
if(file[0]=='f'):
y.append([0,1])
else :
y.append([1,0])
#y.append(0 if file[0] == 'f' else 1)
filenames.append(file)
print(len(y))
print("done")
return
return filenames,np.array(X,dtype=np.float32), np.array(y)#,dtype=object)
#files,X,y=get_data_mat("test/")
get_data_mat("captchas")