-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcaptchatotext.py
74 lines (64 loc) · 2.12 KB
/
captchatotext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
import jesus
#create model
model = Sequential()
#add model layers
model.add(Conv2D(64, kernel_size=3, activation='relu', input_shape=(40,30,1)))
model.add(Conv2D(32, kernel_size=3, activation='relu'))
model.add(Flatten())
model.add(Dense(150, activation='relu'))
model.add(Dense(26, activation='softmax'))
#compile model using accuracy to measure model performance
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
#import read_caltech
#files1,X_train, y_train = read_caltech.get_data_mat('hooroof')
model.load_weights("model.h5")
import cv2
path="id.jpg"
def getchar(num):
return chr(num+97).upper()
def getharf(img):
X_train=np.array([img])
X_train=np.expand_dims(X_train, axis=-1)
predicted=list(model.predict(X_train)[0])
return getchar(predicted.index(max(predicted)))
#print(predicted)
#print(X_train.shape)
def remove_noise(image):
return cv2.medianBlur(image,3)
def canny(image):
return cv2.Canny(image, 100, 200)
def karkhune(img):
th, img = cv2.threshold(img, 110, 255, cv2.THRESH_TOZERO)
th, img = cv2.threshold(img, 110, 255, cv2.THRESH_BINARY_INV)
img = remove_noise(img)
kernel1 = np.ones((2,2),np.uint8)
kernel2 = np.ones((2,2),np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = remove_noise(img)
img = cv2.dilate(img,kernel1,iterations = 1)
img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel2)
img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel2)
img = canny(img)
img = 255-img
return img
def output(path):
img = cv2.imread(path)
img=karkhune(img)
kk=""
for i in range(5):
imgs=img[:,30*i:30*(i+1)]
#cv2.imshow(str(i),imgs)
#imgs=imgs[:,:,1]
word = getharf(imgs)
kk+=word
#print(imgs.shape)
#cv2.imwrite("hooroof/"+word[i]+"_"+str(random.randint(0,1000))+".jpg",imgs)
#cv2.imshow(str(i),imgs)
return kk
def readit():
jesus.getss()
cv2.imshow("asd",cv2.imread("id.jpg"))
print(output("id.jpg"))