-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathargs.py
68 lines (63 loc) · 4.9 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import argparse
import torch.optim as optim
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--lr', default=0.0003, type=float, help='learning rate')
parser.add_argument('--beta1', default=0.9, type=float, help='momentum term for adam')
parser.add_argument('--batch_size', default=32, type=int, help='batch size')
parser.add_argument('--log_dir', default='logs/lp', help='base directory to save logs')
parser.add_argument('--model_dir', default='', help='base directory to save logs')
parser.add_argument('--name', default='', help='identifier for directory')
parser.add_argument('--data_root', default='data', help='root directory for data')
parser.add_argument('--optimizer', default='adam', help='optimizer to train with')
parser.add_argument('--niter', type=int, default=300, help='number of epochs to train for')
parser.add_argument('--seed', default=1, type=int, help='manual seed')
parser.add_argument('--epoch_size', type=int, default=1000, help='epoch size')
parser.add_argument('--image_width', type=int, default=64, help='the height / width of the input image to network')
parser.add_argument('--channels', default=1, type=int)
parser.add_argument('--dataset', default='smmnist', help='dataset to train with')
parser.add_argument('--n_past', type=int, default=5, help='number of frames to condition on')
parser.add_argument('--n_future', type=int, default=10, help='number of frames to predict during training')
parser.add_argument('--n_eval', type=int, default=25, help='number of frames to predict during eval')
parser.add_argument('--rnn_size', type=int, default=256, help='dimensionality of hidden layer')
parser.add_argument('--prior_rnn_layers', type=int, default=1, help='number of layers')
parser.add_argument('--posterior_rnn_layers', type=int, default=1, help='number of layers')
parser.add_argument('--predictor_rnn_layers', type=int, default=2, help='number of layers')
parser.add_argument('--z_dim_app', type=int, default=20, help='dimensionality of z_t')
parser.add_argument('--g_dim_app', type=int, default=128,
help='dimensionality of encoder output vector and decoder input vector')
parser.add_argument('--z_dim_motion', type=int, default=20, help='dimensionality of z_t')
parser.add_argument('--g_dim_motion', type=int, default=128,
help='dimensionality of encoder output vector and decoder input vector')
parser.add_argument('--beta', type=float, default=0.0001, help='weighting on KL to prior')
parser.add_argument('--model', default='dcgan', help='model type (dcgan | vgg)')
parser.add_argument('--data_threads', type=int, default=4, help='number of data loading threads')
parser.add_argument('--num_digits', type=int, default=2, help='number of digits for moving mnist')
parser.add_argument('--last_frame_skip', default=True, action='store_true',
help='if true, skip connections go between frame t and frame t+t rather than last ground truth frame')
parser.add_argument('--device', action='store_true', help='if true, gpu will be used.')
parser.add_argument('--running_avg', default=True, action='store_true',
help='if true, running average of skip connections will be used')
parser.add_argument('--sch_sampling', type=int, default=0,
help='if given an integer, scheduled sampling will be used. inverse sigmoid with k.')
parser.add_argument('--two_lstm', action='store_true', help='if used, static and dynamic lstms will be used.')
parser.add_argument('--motion_skip', action='store_true',
help='if used, motion encoder\'s skip connections will be used in flow decoder.')
opt = parser.parse_args()
if opt.optimizer == 'adam':
opt.optimizer = optim.Adam
elif opt.optimizer == 'rmsprop':
opt.optimizer = optim.RMSprop
elif opt.optimizer == 'sgd':
opt.optimizer = optim.SGD
opt.sc_prob = 1
name = 'model=%s-rnn_size=%d-rnn_layers=%d-%d-%d-n_past=%d-n_future=%d-lr=%.4f-g_dim_app=%d-z_dim_app=%d-g' \
'_dim_motion=%d-z_dim_motion=%d-last_frame_skip=%s_running_avg=%s_sch_sampling=%d_two_lstm=%s_motion_skip' \
'=%s-beta=%.7f%s' % (opt.model, opt.rnn_size, opt.predictor_rnn_layers, opt.posterior_rnn_layers,
opt.prior_rnn_layers, opt.n_past, opt.n_future, opt.lr, opt.g_dim_app, opt.z_dim_app,
opt.g_dim_motion, opt.z_dim_motion, opt.last_frame_skip, opt.running_avg,
opt.sch_sampling, opt.two_lstm, opt.motion_skip, opt.beta, opt.name)
opt.log_dir = '%s/%s-%d/%s' % (opt.log_dir, opt.dataset, opt.num_digits, name) \
if opt.dataset == 'smmnist' else '%s/%s/%s' % (opt.log_dir, opt.dataset, name)
opt.is_real_dataset = True if opt.dataset in ['kitti', 'cityscapes'] else False
return opt