-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvision_transformer.py
1615 lines (1381 loc) · 78.8 KB
/
vision_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
""" Vision Transformer (ViT) in PyTorch
A PyTorch implement of Vision Transformers as described in:
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale'
- https://arxiv.org/abs/2010.11929
`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers`
- https://arxiv.org/abs/2106.10270
The official jax code is released and available at https://github.com/google-research/vision_transformer
Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
Hacked together by / Copyright 2020, Ross Wightman
# ------------------------------------------
# Modification:
# Added code for dualprompt implementation
# -- Jaeho Lee, [email protected]
# ------------------------------------------
"""
import math
import logging
from functools import partial
from collections import OrderedDict
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
import numpy as np
import clip
# from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
# from timm.models.helpers import build_model_with_cfg, resolve_pretrained_cfg, named_apply, adapt_input_conv, checkpoint_seq
# from timm.models.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_
# from timm.models.registry import register_model
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD,\
OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from timm.models.helpers import build_model_with_cfg, named_apply, adapt_input_conv, checkpoint_seq
from timm.models.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_
from timm.models.pretrained import generate_default_cfgs
from timm.models.registry import register_model
from prompt import EPrompt
from attention import PreT_Attention
# from utils_adam import CosineLinear
_logger = logging.getLogger(__name__)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
# How to train your ViT (augreg) weights, pretrained on 21k FT on in1k
'vit_tiny_patch16_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_tiny_patch16_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_small_patch32_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_small_patch32_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_small_patch16_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_small_patch16_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch32_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
custom_load=True),
'vit_base_patch32_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch16_224.sam': _cfg(
url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz', custom_load=True),
'vit_base_patch16_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz',
custom_load=True),
'vit_base_patch16_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch8_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz',
custom_load=True),
'vit_large_patch16_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz',
custom_load=True),
'vit_large_patch16_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
# re-finetuned augreg 21k FT on in1k weights
'vit_base_patch16_224.augreg2_in21k_ft_in1k': _cfg(
file='b16_augreg-a-8.pth'),
'vit_base_patch16_384.augreg2_in21k_ft_in1k': _cfg(
url=''),
'vit_base_patch8_224.augreg2_in21k_ft_in1k': _cfg(
url=''),
# patch models (weights from official Google JAX impl) pretrained on in21k FT on in1k
'vit_base_patch16_224.orig_in21k_ft_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth'),
'vit_base_patch16_384.orig_in21k_ft_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth'),
'vit_large_patch32_384.orig_in21k_ft_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
input_size=(3, 384, 384), crop_pct=1.0),
# How to train your ViT (augreg) weights trained on in1k
'vit_base_patch16_224.augreg_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i1k-300ep-lr_0.001-aug_strong2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz',
custom_load=True),
'vit_base_patch16_384.augreg_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i1k-300ep-lr_0.001-aug_strong2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_large_patch14_224.untrained': _cfg(url=''),
'vit_huge_patch14_224.untrained': _cfg(url=''),
'vit_giant_patch14_224.untrained': _cfg(url=''),
'vit_gigantic_patch14_224.untrained': _cfg(url=''),
# patch models, imagenet21k (weights from official Google JAX impl)
'vit_large_patch32_224.v1_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
num_classes=21843),
'vit_huge_patch14_224.v1_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz',
hf_hub_id='timm/vit_huge_patch14_224_in21k',
custom_load=True, num_classes=21843),
# How to train your ViT (augreg) weights, pretrained on in21k
'vit_tiny_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_small_patch32_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_small_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_base_patch32_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_base_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_base_patch8_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
custom_load=True, num_classes=21843),
'vit_large_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz',
custom_load=True, num_classes=21843),
# SAM trained models (https://arxiv.org/abs/2106.01548)
'vit_base_patch32_224.sam': _cfg(
url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz', custom_load=True),
'vit_base_patch16_224.sam': _cfg(
url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz', custom_load=True),
# DINO pretrained - https://arxiv.org/abs/2104.14294 (no classifier head, for fine-tune only)
'vit_small_patch16_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_small_patch8_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_base_patch16_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_base_patch8_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
# ViT ImageNet-21K-P pretraining by MILL
'vit_base_patch16_224_miil.in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_in21k_miil-887286df.pth',
mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear', num_classes=11221),
'vit_base_patch16_224_miil.in21k_ft_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_1k_miil_84_4-2deb18e3.pth',
mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear'),
# custom timm variants
'vit_base_patch16_rpn_224.in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_base_patch16_rpn_224-sw-3b07e89d.pth'),
'vit_medium_patch16_gap_240.in12k': _cfg(
hf_hub_id='timm/vit_medium_patch16_gap_240.in12k',
input_size=(3, 240, 240), crop_pct=0.95, num_classes=11821),
'vit_medium_patch16_gap_256.in12k_ft_in1k': _cfg(
hf_hub_id='timm/vit_medium_patch16_gap_256.in12k_ft_in1k',
input_size=(3, 256, 256), crop_pct=0.95),
'vit_medium_patch16_gap_384.in12k_ft_in1k': _cfg(
hf_hub_id='timm/vit_medium_patch16_gap_384.in12k_ft_in1k',
input_size=(3, 384, 384), crop_pct=0.95, crop_mode='squash'),
'vit_base_patch16_gap_224': _cfg(),
# CLIP pretrained image tower and related fine-tuned weights
'vit_base_patch16_clip_224.openai': _cfg(
hf_hub_id='timm/clip_vit_base_patch16_224.openai',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_base_patch32_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-B-32-laion2B-s34B-b79K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_base_patch16_clip_224.laion2b': _cfg(
#hf_hub_id='laion/CLIP-ViT-B-16-laion2B-s34B-b88K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512),
'vit_large_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-L-14-laion2B-s32B-b82K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, num_classes=768),
'vit_huge_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-H-14-laion2B-s32B-b79K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024),
'vit_giant_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-g-14-laion2B-s12B-b42K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024),
'vit_base_patch32_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_224.laion2b_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_224.laion2b_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_base_patch16_clip_384.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_384.laion2b_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'),
'vit_large_patch14_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.laion2b_ft_in1k',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0),
'vit_large_patch14_clip_336.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_336.laion2b_ft_in1k',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD,
crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'),
'vit_huge_patch14_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/vit_huge_patch14_clip_224.laion2b_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_huge_patch14_clip_336.laion2b_ft_in1k': _cfg(
hf_hub_id='',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'),
'vit_base_patch32_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch32_clip_384.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384)),
'vit_base_patch32_clip_448.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 448, 448)),
'vit_base_patch16_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=0.95),
'vit_base_patch16_clip_384.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'),
'vit_large_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0),
'vit_large_patch14_clip_336.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD,
crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'),
'vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'),
'vit_base_patch32_clip_224.laion2b_ft_in12k': _cfg(
#hf_hub_id='timm/vit_base_patch32_clip_224.laion2b_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_base_patch16_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_224.laion2b_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_large_patch14_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.laion2b_ft_in12k',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, num_classes=11821),
'vit_huge_patch14_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='timm/vit_huge_patch14_clip_224.laion2b_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=11821),
'vit_base_patch32_clip_224.openai': _cfg(
hf_hub_id='timm/clip_vit_base_patch32_224.openai',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
# 'vit_base_patch16_clip_224.openai': _cfg(
# hf_hub_id='timm/clip_vit_base_patch16_224.openai',
# mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_large_patch14_clip_224.openai': _cfg(
hf_hub_id='timm/clip_vit_large_patch14_224.openai',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768),
'vit_base_patch32_clip_224.openai_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_224.openai_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_224.openai_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_384.openai_ft_in1k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_384.openai_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'),
'vit_large_patch14_clip_224.openai_ft_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.openai_ft_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_base_patch32_clip_224.openai_ft_in12k_in1k': _cfg(
#hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch32_clip_384.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=0.95, input_size=(3, 384, 384), crop_mode='squash'),
'vit_base_patch16_clip_224.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=0.95),
'vit_base_patch16_clip_384.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=0.95, input_size=(3, 384, 384), crop_mode='squash'),
'vit_large_patch14_clip_224.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_large_patch14_clip_336.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'),
'vit_base_patch32_clip_224.openai_ft_in12k': _cfg(
#hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_base_patch16_clip_224.openai_ft_in12k': _cfg(
hf_hub_id='timm/vit_base_patch16_clip_224.openai_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_large_patch14_clip_224.openai_ft_in12k': _cfg(
hf_hub_id='timm/vit_large_patch14_clip_224.openai_ft_in12k',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=11821),
# experimental (may be removed)
'vit_base_patch32_plus_256': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95),
'vit_base_patch16_plus_240': _cfg(url='', input_size=(3, 240, 240), crop_pct=0.95),
'vit_small_patch16_36x1_224': _cfg(url=''),
'vit_small_patch16_18x2_224': _cfg(url=''),
'vit_base_patch16_18x2_224': _cfg(url=''),
})
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_lae=False):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, *args):
B, N, C = x.shape
# self.qkv(x) -> B,N,3C -> B,N,3,H,C//H
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# (3,B,H,N,C//H)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
# q or k or v: (B, H, N, C//H)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn) # (B,H,N,N)
x = (attn @ v).transpose(1, 2).reshape(B, N, C) # (B,H,N,C//H) -> (B,N,H,C//H) -> (B,N,C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class Block(nn.Module):
def __init__(
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_layer=Attention, use_lae=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = attn_layer(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
use_lae=use_lae)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x, prompt=None):
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), prompt)))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class ResPostBlock(nn.Module):
def __init__(
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.init_values = init_values
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.norm1 = norm_layer(dim)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.init_weights()
def init_weights(self):
# NOTE this init overrides that base model init with specific changes for the block type
if self.init_values is not None:
nn.init.constant_(self.norm1.weight, self.init_values)
nn.init.constant_(self.norm2.weight, self.init_values)
def forward(self, x):
x = x + self.drop_path1(self.norm1(self.attn(x)))
x = x + self.drop_path2(self.norm2(self.mlp(x)))
return x
class ParallelBlock(nn.Module):
def __init__(
self, dim, num_heads, num_parallel=2, mlp_ratio=4., qkv_bias=False, init_values=None,
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.num_parallel = num_parallel
self.attns = nn.ModuleList()
self.ffns = nn.ModuleList()
for _ in range(num_parallel):
self.attns.append(nn.Sequential(OrderedDict([
('norm', norm_layer(dim)),
('attn', Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)),
('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()),
('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity())
])))
self.ffns.append(nn.Sequential(OrderedDict([
('norm', norm_layer(dim)),
('mlp', Mlp(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)),
('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()),
('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity())
])))
def _forward_jit(self, x):
x = x + torch.stack([attn(x) for attn in self.attns]).sum(dim=0)
x = x + torch.stack([ffn(x) for ffn in self.ffns]).sum(dim=0)
return x
@torch.jit.ignore
def _forward(self, x):
x = x + sum(attn(x) for attn in self.attns)
x = x + sum(ffn(x) for ffn in self.ffns)
return x
def forward(self, x):
if torch.jit.is_scripting() or torch.jit.is_tracing():
return self._forward_jit(x)
else:
return self._forward(x)
def dataset_idx2text(dataset='Split-CIFAR100'):
if dataset=='Split-CIFAR100':
import json
with open('continual_datasets/dataset_infos.json') as f:
classes = json.load(f)['cifar100']['features']['fine_label']['names']
idx2text = {i:classes[i] for i in range(len(classes))}
return idx2text
def text_preprocess(target, dataset):
"""
@params target: torch tensor (int): (bs,)
return text_target: list (bs,)
"""
idx2text = dataset_idx2text(dataset=dataset)
text_target = ['a photo of '+idx2text[trg_idx.item()] for trg_idx in target]
return text_target
class VisionTransformer(nn.Module):
""" Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- https://arxiv.org/abs/2010.11929
"""
def __init__(
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token',
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=None,
class_token=True, no_embed_class=False,
pre_norm=False,
fc_norm=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
weight_init='', embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=Block,
prompt_length=None, embedding_key='cls', prompt_init='uniform', prompt_pool=False, prompt_key=False, pool_size=None,
top_k=None, batchwise_prompt=False, prompt_key_init='uniform', head_type='token', use_prompt_mask=False,
use_g_prompt=False, g_prompt_length=None, g_prompt_layer_idx=None, use_prefix_tune_for_g_prompt=False,
use_e_prompt=False, e_prompt_layer_idx=None, use_prefix_tune_for_e_prompt=False, same_key_value=False,
eval_prototype_clf=False, original_model=False, args=None,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
global_pool (str): type of global pooling for final sequence (default: 'token')
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
init_values: (float): layer-scale init values
class_token (bool): use class token
fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None)
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
weight_init (str): weight init scheme
embed_layer (nn.Module): patch embedding layer
norm_layer: (nn.Module): normalization layer
act_layer: (nn.Module): MLP activation layer
block_fn: (nn.Module): transformer block
prompt_pool (bool): use prompt pool or not
"""
super().__init__()
assert global_pool in ('', 'avg', 'token')
assert class_token or global_pool != 'token'
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.device = torch.device(args.device)
self.img_size = img_size
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.class_token = class_token
self.num_prefix_tokens = 1 if class_token else 0
self.no_embed_class = no_embed_class
self.grad_checkpointing = False
self.patch_embed = embed_layer(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
bias=not pre_norm)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02)
self.pos_drop = nn.Dropout(p=drop_rate)
self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()
### prompt settings #################################################################################################
#####################################################################################################################
self.head_type = head_type
self.prompt_pool = prompt_pool
self.use_prompt_mask = use_prompt_mask # true
self.use_g_prompt = use_g_prompt
self.g_prompt_layer_idx = g_prompt_layer_idx # 0 1
# num_g_prompt : The actual number of layers to which g-prompt is attached.
# In official code, create as many layers as the total number of layers and select them based on the index
num_g_prompt = len(self.g_prompt_layer_idx) if self.g_prompt_layer_idx is not None else 0
self.use_prefix_tune_for_g_prompt = use_prefix_tune_for_g_prompt # set to true
self.use_e_prompt = use_e_prompt
self.e_prompt_layer_idx = e_prompt_layer_idx # 2 3 4
num_e_prompt = len(self.e_prompt_layer_idx) if self.e_prompt_layer_idx is not None else 0
self.use_prefix_tune_for_e_prompt = use_prefix_tune_for_e_prompt # set to true
if not self.use_prefix_tune_for_g_prompt and not self.use_prefix_tune_for_g_prompt:
self.use_g_prompt = False
self.g_prompt_layer_idx = []
if use_g_prompt and g_prompt_length is not None and len(g_prompt_layer_idx) != 0: # set to true
if not use_prefix_tune_for_g_prompt: # set to false
g_prompt_shape=(num_g_prompt, g_prompt_length, embed_dim)
if prompt_init == 'zero':
self.g_prompt = nn.Parameter(torch.zeros(g_prompt_shape))
elif prompt_init == 'uniform':
self.g_prompt = nn.Parameter(torch.randn(g_prompt_shape))
nn.init.uniform_(self.g_prompt, -1, 1)
else: # set to true
if same_key_value: # set to false
g_prompt_shape=(num_g_prompt, 1, g_prompt_length, num_heads, embed_dim // num_heads)
if prompt_init == 'zero':
self.g_prompt = nn.Parameter(torch.zeros(g_prompt_shape))
elif prompt_init == 'uniform':
self.g_prompt = nn.Parameter(torch.randn(g_prompt_shape))
nn.init.uniform_(self.g_prompt, -1, 1)
self.g_prompt = self.g_prompt.repeat(1, 2, 1, 1, 1)
else: # set to true
g_prompt_shape=(num_g_prompt, 2, g_prompt_length, num_heads, embed_dim // num_heads)
# (g_prompt_applied_layers, key&values, g_prompt_nums, ...)
if prompt_init == 'zero':
self.g_prompt = nn.Parameter(torch.zeros(g_prompt_shape))
elif prompt_init == 'uniform':
self.g_prompt = nn.Parameter(torch.randn(g_prompt_shape))
nn.init.uniform_(self.g_prompt, -1, 1)
else:
self.g_prompt = None
if use_e_prompt and e_prompt_layer_idx is not None: # set to true
self.e_prompt = EPrompt(length=prompt_length, embed_dim=embed_dim, embedding_key=embedding_key, prompt_init=prompt_init,
prompt_pool=prompt_pool, prompt_key=prompt_key, pool_size=pool_size, top_k=top_k, batchwise_prompt=batchwise_prompt,
prompt_key_init=prompt_key_init, num_layers=num_e_prompt, use_prefix_tune_for_e_prompt=use_prefix_tune_for_e_prompt,
num_heads=num_heads, same_key_value=same_key_value, coda_prompt=args.coda_prompt,
num_coda_prompt=args.num_coda_prompt, feat_prompt=args.feat_prompt,
num_feat_prompt=args.ptm_num_feat_prompt if original_model else args.num_feat_prompt,
softmax_feat=args.softmax_prompt, original_model=original_model, args=args)
print('e-prompt is init')
if not (use_g_prompt or use_e_prompt): # set to false
attn_layer = Attention
elif not (use_prefix_tune_for_g_prompt or use_prefix_tune_for_e_prompt): # set to false
# Prompt tunning
attn_layer = Attention
else: # set to true
# Prefix tunning
attn_layer = PreT_Attention
self.total_prompt_len = 0
if self.prompt_pool:
if not self.use_prefix_tune_for_g_prompt: # set to true
self.total_prompt_len += g_prompt_length * len(self.g_prompt_layer_idx) # 5 * 2
if not self.use_prefix_tune_for_e_prompt: # set to true
self.total_prompt_len += prompt_length * top_k * len(self.e_prompt_layer_idx) # 5*1*3
# prompt_length for E-prompt
### prompt settings #################################################################################################
#####################################################################################################################
#####################################################################################################################
### clip settings #################################################################################################
self.clip_emb = args.clip_emb
if self.clip_emb:
self.clip_proj = nn.Linear(512,embed_dim)
self.clip_emb_norm = norm_layer(embed_dim//num_heads)
self.num_heads = num_heads
### clip settings #################################################################################################
#####################################################################################################################
#####################################################################################################################
### separate specialization #################################################################################################
self.sep_specialization = args.sep_specialization
self.eval_known_prompt = args.eval_known_prompt
### separate specialization #################################################################################################
#####################################################################################################################
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
block_fn(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, init_values=init_values,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer,
attn_layer=attn_layer, use_lae=False)
for i in range(depth)])
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()
# Classifier Head
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
self.task_agnoistic_head = False
self.clip_text_head = False
self.eval_prototype_clf = False
if args.task_agnostic_head:
self.task_agnoistic_head = True
# self.head = nn.Linear(self.embed_dim, 1) # Logit
self.mlp = Mlp(in_features=self.embed_dim, hidden_features=self.embed_dim,
act_layer=nn.GELU, drop=0. ) # Logit
self.head = nn.Linear(self.embed_dim*2, 1)
self.sigmoid = nn.Sigmoid()
#####################################################################################################################
### clip text encoder head ##########################################################################################
elif args.clip_text_head:
# import clip
self.clip_text_head = True
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.dataset_nb_class = args.nb_classes
self.trg_embs = self.load_trg_embs(args.dataset)
# self.head = clip.load("ViT-B/16",)[0] # 0 index is clip model
### clip text encoder head ##########################################################################################
#####################################################################################################################
else:
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if weight_init != 'skip':
self.init_weights(weight_init)
# print('self.fc_norm', self.fc_norm)
def load_trg_embs(self,dataset):
with torch.no_grad():
clip_model, _ = clip.load("ViT-B/16", device=self.device)
text_clip_emb = text_preprocess(torch.arange(self.dataset_nb_class), dataset) # (Cls,): strings
text_clip_emb = clip.tokenize(text_clip_emb).to(self.device) # (Cls, 77)
text_clip_emb = clip_model.encode_text(text_clip_emb).detach().cpu() # (Cls, D)
return text_clip_emb
def init_weights(self, mode=''):
assert mode in ('jax', 'jax_nlhb', 'moco', '')
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
trunc_normal_(self.pos_embed, std=.02)
if self.cls_token is not None:
nn.init.normal_(self.cls_token, std=1e-6)
named_apply(get_init_weights_vit(mode, head_bias), self)
def _init_weights(self, m):
# this fn left here for compat with downstream users
init_weights_vit_timm(m)
@torch.jit.ignore()
def load_pretrained(self, checkpoint_path, prefix=''):
_load_weights(self, checkpoint_path, prefix)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'dist_token'}
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes: int, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'avg', 'token')
self.global_pool = global_pool
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def _pos_embed(self, x):
if self.no_embed_class:
# deit-3, updated JAX (big vision)
# position embedding does not overlap with class token, add then concat
x = x + self.pos_embed
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
else:
# original timm, JAX, and deit vit impl
# pos_embed has entry for class token, concat then add
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + self.pos_embed
return self.pos_drop(x)
def forward_features(self, x, task_id=-1, target=None, cls_features=None, aug_cls_features=None,
clip_emb=None,train=False, ):
"""
clip_emb: (bs,D)
"""
x = self.patch_embed(x) #(bs,ps,D)
x = self._pos_embed(x)
x = self.norm_pre(x)
# if self.cls_token is not None:
# x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) #(bs,1+ps,D)
# x = self.pos_drop(x + self.pos_embed)
if self.grad_checkpointing and not torch.jit.is_scripting(): # set to false
x = checkpoint_seq(self.blocks, x)
else:
if self.use_g_prompt or self.use_e_prompt: # set to true
if self.use_e_prompt: #self.use_prompt_mask and train: # set to true
if train or self.eval_known_prompt:
if self.sep_specialization:
prompt_mask = task_id.to(x.device) # (bs,1)
else:
start = task_id * self.e_prompt.top_k
end = (task_id + 1) * self.e_prompt.top_k
single_prompt_mask = torch.arange(start, end).to(x.device)
prompt_mask = single_prompt_mask.unsqueeze(0).expand(x.shape[0], -1) # (bs, #top_k=1)
if end > self.e_prompt.pool_size: # pool_size <- 10 for e-prompt
prompt_mask = None
else:
prompt_mask = None
res = self.e_prompt(x, target=target, prompt_mask=prompt_mask, cls_features=cls_features, aug_cls_features=aug_cls_features,
task_id=task_id,)
e_prompt = res['batched_prompt'] # (bs,top_k,D) # D and C are exchangable
else:
prompt_mask = None
g_prompt_counter = -1
res = dict()
g_prompt_counter = -1
e_prompt_counter = -1
if self.clip_emb:
# print(g_prompt.size())
clip_emb = self.clip_proj(clip_emb)
clip_bs, clip_dim = clip_emb.size()
# num_heads = g_prompt.size(-2)
clip_emb = clip_emb.view(clip_bs, self.num_heads,
clip_dim//self.num_heads).unsqueeze(1).unsqueeze(1)
# print(clip_emb.size())
for i, block in enumerate(self.blocks):
if i in self.g_prompt_layer_idx: # [0 1]
if self.use_prefix_tune_for_g_prompt: # set to true
g_prompt_counter += 1
# Prefix tunning, [B, 2, g_prompt_length, num_heads, embed_dim // num_heads]
idx = torch.tensor([g_prompt_counter] * x.shape[0]).to(x.device) # (bs,)
g_prompt = self.g_prompt[idx]
if self.clip_emb:
# clip_emb: (bs, 1,1,H,D/H)
g_prompt = g_prompt + clip_emb
g_prompt = self.clip_emb_norm(g_prompt)
else:
g_prompt=None
x = block(x, prompt=g_prompt)
elif i in self.e_prompt_layer_idx: # [2 3 4]
e_prompt_counter += 1
if self.use_prefix_tune_for_e_prompt: # set to true
# Prefix tunning, [B, 2, top_k * e_prompt_length, num_heads, embed_dim // num_heads]
x = block(x, prompt=e_prompt[e_prompt_counter])
else:
# Prompt tunning, [B, top_k * e_prompt_length, embed_dim]
prompt = e_prompt[e_prompt_counter]
x = torch.cat([prompt, x], dim=1)
x = block(x)
else:
x = block(x)
else: # no prompt or prefix tuning
x = self.blocks(x)
res = dict()
x = self.norm(x)
res['x'] = x
return res
def forward_head(self, res, cls_features=None, pre_logits: bool = False):
x = res['x']
if self.class_token and self.head_type == 'token': # set to true
if self.task_agnoistic_head:
prompt_tok = x[:, 0]
if self.prompt_pool: # set to true
x = x[:, self.total_prompt_len] # CLS token: (bs, 1, D)
else:
x = x[:, 0]
elif self.head_type == 'gap' and self.global_pool == 'avg':
x = x.mean(dim=1)
elif self.head_type == 'prompt' and self.prompt_pool:
x = x[:, 1:(1 + self.total_prompt_len)] if self.class_token else x[:, 0:self.total_prompt_len]
x = x.mean(dim=1)
elif self.head_type == 'token+prompt' and self.prompt_pool and self.class_token:
x = x[:, 0:self.total_prompt_len + 1]
x = x.mean(dim=1)
else:
raise ValueError(f'Invalid classifier={self.classifier}')
res['pre_logits'] = x
x = self.fc_norm(x) # identity now
if self.task_agnoistic_head:
x = self.mlp(x)
prompt_tok = self.mlp(prompt_tok)
logits = (x * prompt_tok).sum(-1,).unsqueeze(-1)
elif self.eval_prototype_clf:
if self.training :
logits = self.head(x) # normalize -> matmul
else: # EVAL
# print("EVAL-ing")
if self.merge_pt:
logits = self.proto_head(torch.cat([x, cls_features], dim=-1))
else:
logits = self.proto_head(x)
else:
logits = self.head(x) # if clip text encoder, the head is frozen.
res['logits'] = logits # fc
if self.task_agnoistic_head:
res['logits'] = self.sigmoid(logits) # fc
return res
def forward(self, x, task_id=-1, cls_features=None, aug_cls_features=None, clip_emb=None,
train=False, target=None,):
res = self.forward_features(x, task_id=task_id, target=target, cls_features=cls_features, aug_cls_features=aug_cls_features,
clip_emb=clip_emb, train=train,)
res = self.forward_head(res, cls_features=cls_features)
return res
def init_weights_vit_timm(module: nn.Module, name: str = ''):
""" ViT weight initialization, original timm impl (for reproducibility) """
if isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif hasattr(module, 'init_weights'):
module.init_weights()
def init_weights_vit_jax(module: nn.Module, name: str = '', head_bias: float = 0.):
""" ViT weight initialization, matching JAX (Flax) impl """
if isinstance(module, nn.Linear):
if name.startswith('head'):
nn.init.zeros_(module.weight)
nn.init.constant_(module.bias, head_bias)
else:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.normal_(module.bias, std=1e-6) if 'mlp' in name else nn.init.zeros_(module.bias)
elif isinstance(module, nn.Conv2d):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif hasattr(module, 'init_weights'):
module.init_weights()
def init_weights_vit_moco(module: nn.Module, name: str = ''):
""" ViT weight initialization, matching moco-v3 impl minus fixed PatchEmbed """
if isinstance(module, nn.Linear):
if 'qkv' in name:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1]))
nn.init.uniform_(module.weight, -val, val)
else:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)