-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathfixmatch.py
558 lines (440 loc) · 27 KB
/
fixmatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
'''
Weak-strong matching (no overlapping window)
'''
# tcn embedding / classification input length
import numpy as np
import math
np.set_printoptions(precision=4)
emb_dim = 64
num_class_dict = {"50salads": 19, "HAPT": 6, "GTEA": 11, "mHealth": 12, "opportunity": 17}
dim_dict = {"50salads": 2048, "HAPT": 6, "GTEA": 2048, "mHealth": 23, "opportunity": 113}
batch_dict_l = {"50salads": 1, "HAPT": 4, "GTEA": 1, "mHealth": 4, "opportunity": 4}
batch_dict_u = {"50salads": 2, "HAPT": 8, "GTEA": 2, "mHealth": 8, "opportunity": 8}
num_label_per_class_dict = {"50salads": 20, "HAPT": 5, "GTEA": 10, "mHealth": 5, "opportunity": 2}
one_second_interval_dict = {"50salads": 30, "HAPT": 50, "GTEA": 15, "mHealth": 50, "opportunity": 100}
length_dict = {"50salads": 10, "HAPT": 10, "GTEA": 5, "mHealth": 10, "opportunity": 3}
lr_dict = {"50salads": 0.005, "HAPT": 0.005, "GTEA": 0.0005, "mHealth": 0.005, "opportunity": 0.005}
warmup_iter_dict = {"50salads": 25000, "HAPT": 5000, "GTEA": 10000, "mHealth": 15000, "opportunity": 17000}
iter_dict = {"50salads": 50000, "HAPT": 25000, "GTEA": 25000, "mHealth": 50000, "opportunity": 30000}
lambda1_dict = {"50salads": 1, "HAPT": 1, "GTEA": 1, "mHealth": 1, "opportunity": 1}
window_dict = {"50salads": 1536, "HAPT": 1536, "GTEA": 1536, "mHealth": 1280, "opportunity": 1152}
overlap_dict = {"50salads": 1024, "HAPT": 1024, "GTEA": 1024, "mHealth": 768, "opportunity": 1024}
dilation_dict = {"50salads": 10, "HAPT": 10, "GTEA": 10, "mHealth": 10, "opportunity": 10}
import argparse
parser = argparse.ArgumentParser(description='parameters for TSAL')
parser.add_argument('--data', type=str, default='None', help='dataset name')
parser.add_argument('--gpu', type=str, default="0", help='gpu number')
parser.add_argument('--seed', type=int, default=0, help='experiment seed')
parser.add_argument('--aug', type=str, default="None", help='augmentation method for pseudo-label match')
parser.add_argument('--mul_label_per_class', type=float, default=2.0, help='multiplier of the number of timestamp label per class')
parser.add_argument('--overlap', type=int, default=-1, help='the ratio of unlabeled batch size to labeled batch size')
parser.add_argument('--window', type=int, default=-1, help='input window length')
parser.add_argument('--pltest', type=int, default=0, help='strong augmentation name')
parser.add_argument('--lambda1', type=float, default=-1, help='hyperparameter for PL update')
parser.add_argument('--lambda2', type=float, default=-1, help='hyperparameter for balancing PL')
parser.add_argument('--cond', type=int, default=-1, help='warmup iteration')
args = parser.parse_args()
DATA = args.data
GPU = args.gpu
SEED = args.seed
AUG = args.aug
if args.overlap == -1:
OVERLAP = overlap_dict[DATA]
else:
OVERLAP = args.overlap
if args.window == -1:
WINDOW = window_dict[DATA]
else:
WINDOW = args.window
if args.lambda1 == -1:
LAMBDA1 = lambda1_dict[DATA]
else:
LAMBDA1 = args.lambda1
LAMBDA2 = args.lambda2
PL_TEST = args.pltest
LABEL_LENGTH = length_dict[DATA]
MUL_LABEL_PER_CLASS = args.mul_label_per_class
NUM_LABEL_PER_CLASS = int(num_label_per_class_dict[DATA] * MUL_LABEL_PER_CLASS)
NUM_CLASS = num_class_dict[DATA]
ITER = args.cond
if ITER == -1:
ITER = warmup_iter_dict[DATA]
print(f"{args}\nNUM_LABEL_PER_CLASS: {NUM_LABEL_PER_CLASS}\nNUM_EMB: {emb_dim}\n")
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = GPU
import tensorflow as tf
physical_devices = tf.config.list_physical_devices('GPU')
try:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
except:
pass
import model
from eval import *
from dataset import *
from utils import *
from tqdm import tqdm
from augmentation import *
@tf.function
def pl_entropy_loss(outputs, mask, NUM_CLASS):
'''
:param outputs: classifier probability with shape(batch, timestamp, num_class).
:param mask: mask indicating label existence with shape(batch, timestamp), an output of C3PL.
:param NUM_CLASS
:return: class size entropy loss, 1-entropy(prediction*log_c*prediction) where prediction is filtered and averaged.
'''
dim = outputs.shape[-1]
mask = tf.expand_dims(mask, axis=2)
tiled_mask = tf.tile(mask, [1, 1, dim])
tiled_mask = tf.cast(tiled_mask, dtype=tf.bool)
outputs_flat = tf.boolean_mask(outputs, tiled_mask)
if tf.cast(tf.reduce_sum(mask),dtype=tf.bool):
# tf.print(outputs_flat.shape)
masked_outputs = tf.reshape(outputs_flat,(-1, outputs.shape[-1]))
averaged_outputs = tf.reduce_mean(masked_outputs, axis=0)
loss = 1-(-tf.tensordot(averaged_outputs,tf.math.log(averaged_outputs)/tf.math.log(tf.cast(NUM_CLASS,dtype=tf.float32)), axes=1))
return loss
else:
return tf.cast(0, dtype=tf.float32)
# @tf.function
def masked_TMSE_loss(y_pred, mask_ind, multiples, max_value=4, reduction="mean"):
'''
:param y_pred: tensorflow tensor predicted from sequential classifier. shape=(batch,timestamp,dim)
:return: return T-MSE loss for minimizing over-segmentation error.
'''
y_pred = tf.clip_by_value(y_pred, clip_value_min=1e-8, clip_value_max=1)
one_timestamp = tf.constant([[0, 1]], dtype=tf.int32)
multiples = tf.constant((mask_ind.shape[0], 1))
one_timestamp = tf.tile(one_timestamp, multiples)
prev_ind = tf.nn.relu(mask_ind - one_timestamp)
prev_ind = tf.cast(prev_ind,dtype=tf.int32)
prev_pred = tf.gather_nd(y_pred, prev_ind)
curr_pred = tf.gather_nd(y_pred, mask_ind)
delta_tc_square = tf.keras.metrics.mean_squared_error(tf.math.log(curr_pred),tf.stop_gradient(tf.math.log(prev_pred)))
delta_tc_tilda = tf.clip_by_value(delta_tc_square, clip_value_min=0, clip_value_max=max_value**2)
if reduction == "mean":
return tf.math.reduce_mean(delta_tc_tilda)
elif reduction == "none":
return delta_tc_tilda
else:
raise NotImplementedError
@tf.function
def mstcn_loss(model, outputs, y, mask, lambd=0.15, epsilon=1e-6, add_TMSE_loss=True):
'''
Args:
outputs: multi-stage output
lambd: lambda for consistency loss
epsilon: small number for preventing division error.
Returns:
mstcn_loss
'''
y = tf.cast(y, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
loss = tf.math.divide(tf.math.reduce_sum(tf.math.multiply(model.cls_loss(y, outputs[0]), mask)),
tf.math.reduce_sum(tf.cast(mask != 0, tf.float32)) + epsilon)
if add_TMSE_loss:
loss += lambd * model.seg_loss([], outputs[0])
# loss += lambd * masked_TMSE_loss(outputs[0], mask = mask)
for i in range(len(model.tcn_stage) - 1):
loss += tf.math.divide(tf.math.reduce_sum(tf.math.multiply(model.cls_loss(y, outputs[i + 1]), mask)),
tf.math.reduce_sum(tf.cast(mask != 0, tf.float32)) + epsilon)
if add_TMSE_loss:
loss += lambd * model.seg_loss([], outputs[i + 1])
# loss += lambd * masked_TMSE_loss(outputs[i + 1], mask = mask)
return loss
@tf.function
def cross_entropy_with_soft_label(y, output_softmax):
return tf.reduce_mean(-tf.reduce_sum(y * tf.math.log(output_softmax), [2]))
@tf.function
def mstcn_loss_soft_label(model, outputs, y, mask, lambd=0.15, epsilon=1e-6, add_TMSE_loss=True):
'''
Args:
outputs: multi-stage output
lambd: lambda for consistency loss
epsilon: small number for preventing division error.
Returns:
mstcn_loss
'''
# total_loss = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(y_hat_softmax), [1]))
y = tf.cast(y, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
loss = tf.math.divide(tf.math.reduce_sum(tf.math.multiply(cross_entropy_with_soft_label(y, outputs[0]), mask)),
tf.math.reduce_sum(tf.cast(mask != 0, tf.float32)) + epsilon)
if add_TMSE_loss:
loss += lambd * model.seg_loss([], outputs[0])
# loss += lambd * masked_TMSE_loss(outputs[0], mask = mask)
for i in range(len(model.tcn_stage) - 1):
loss += tf.math.divide(tf.math.reduce_sum(tf.math.multiply(cross_entropy_with_soft_label(y, outputs[i + 1]), mask)),
tf.math.reduce_sum(tf.cast(mask != 0, tf.float32)) + epsilon)
if add_TMSE_loss:
loss += lambd * model.seg_loss([], outputs[i + 1])
# loss += lambd * masked_TMSE_loss(outputs[i + 1], mask = mask)
return loss
@tf.function
def classwise_averaged_loss(model, outputs, y, mask, lambd=0.15, epsilon=1e-6):
# loss averaged over each class
y = tf.cast(y, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
class_mask = tf.cast(y==0,dtype=tf.float32)
class_true_mask = tf.math.multiply(mask,class_mask)
masked_class_loss = tf.math.multiply(model.cls_loss(y, outputs[0]), class_true_mask)
averaged_class_loss = tf.math.divide(tf.math.reduce_sum(masked_class_loss), tf.math.reduce_sum(tf.cast(class_true_mask != 0, tf.float32))+epsilon) + lambd * model.seg_loss([], outputs[0])
for i in range(len(model.tcn_stage)-1):
averaged_class_loss += tf.math.divide(tf.math.reduce_sum(tf.math.multiply(model.cls_loss(y, outputs[i+1]), class_true_mask)),
tf.math.reduce_sum(tf.cast(class_true_mask != 0, tf.float32))+epsilon)\
+ lambd * model.seg_loss([], outputs[i+1])
for j in range(NUM_CLASS-1):
class_mask = tf.cast(y==j,dtype=tf.float32)
class_true_mask = tf.math.multiply(mask,class_mask)
masked_class_loss = tf.math.multiply(model.cls_loss(y, outputs[0]), class_true_mask)
averaged_class_loss += tf.math.divide(tf.math.reduce_sum(masked_class_loss), tf.math.reduce_sum(tf.cast(class_true_mask != 0, tf.float32))+epsilon) + lambd * model.seg_loss([], outputs[0])
for i in range(len(model.tcn_stage)-1):
averaged_class_loss += tf.math.divide(tf.math.reduce_sum(tf.math.multiply(model.cls_loss(y, outputs[i+1]), class_true_mask)),
tf.math.reduce_sum(tf.cast(class_true_mask != 0, tf.float32))+epsilon)\
+ lambd * model.seg_loss([], outputs[i+1])
averaged_class_loss /= NUM_CLASS
return averaged_class_loss
# @tf.function
def merge_pseudo_true_label(y_true, mask_true, pseudo_labels, pseudo_mask, ignore=False):
'''
Merge true label and pseudo-label whose prediction is above confidence.
:param ignore:
:param pseudo_mask:
:param pseudo_labels:
:param y_true: true class label with shape(batch, timestamp, 1)
:param mask_true: mask indicating label existence with shape(batch, timestamp, 1)
:return: binary merged mask (1 means pseudo or true label exist) and merged label.
'''
if ignore:
return y_true, mask_true, -1, 1
else:
mask_true_inverted = tf.cast(tf.math.logical_not(tf.cast(mask_true, dtype=tf.bool)), dtype=tf.int32)
pseudo_true_labels = tf.multiply(y_true, mask_true) + tf.multiply(pseudo_labels, mask_true_inverted) # include every timestamp label from predictions and true label
pseudo_true_mask = tf.multiply(pseudo_mask, mask_true_inverted) + mask_true
pseudo_mask_bool = tf.cast(pseudo_true_mask, dtype=tf.bool)
num_pseudo = tf.reduce_sum(pseudo_true_mask)
num_corr_pseudo = tf.reduce_sum(tf.cast(tf.boolean_mask(y_true, pseudo_mask_bool) == tf.boolean_mask(pseudo_true_labels, pseudo_mask_bool),dtype=tf.int32))
return pseudo_true_labels, pseudo_true_mask, num_pseudo, num_corr_pseudo
# @tf.function
def merge_soft_true_label(y_true, mask_true, soft_labels, pseudo_mask, ignore=False):
if ignore:
return y_true, mask_true, -1, 1
else:
mask_true = tf.cast(mask_true, dtype=tf.float32)
pseudo_mask = tf.cast(pseudo_mask, dtype=tf.float32)
soft_labels = tf.cast(soft_labels, dtype=tf.float32)
mask_true_inverted = tf.cast(tf.math.logical_not(tf.cast(mask_true, dtype=tf.bool)), dtype=tf.float32)
mask_true = tf.tile(tf.expand_dims(mask_true, axis=2),[1,1,NUM_CLASS])
pseudo_mask = tf.tile(tf.expand_dims(pseudo_mask, axis=2),[1,1,NUM_CLASS])
mask_true_inverted = tf.tile(tf.expand_dims(mask_true_inverted, axis=2),[1,1,NUM_CLASS])
y_true_one_hot = tf.cast(tf.one_hot(y_true, depth=NUM_CLASS), dtype=tf.float32)
pseudo_true_mask = tf.multiply(pseudo_mask, mask_true_inverted) + mask_true
pseudo_true_labels = tf.multiply(y_true_one_hot, mask_true) + tf.multiply(soft_labels, mask_true_inverted)
return pseudo_true_labels, tf.cast(pseudo_true_mask, dtype=tf.int32)
@tf.function
def normalize_one_hot_sum(one_hot_pl_sum):
'''
If a timestamp has single PL, then its weight becomes 1. Otherwise, weight sum of each PL at a timestamp becomes 1.
:param one_hot_pl_sum: shape(batch,timestamp,num_class)
:return: softened label
'''
sum_along_class_axis = tf.reduce_sum(one_hot_pl_sum, axis=2)
sum_along_class_axis = tf.expand_dims(sum_along_class_axis,axis=2)
soft_pl = one_hot_pl_sum/tf.tile(sum_along_class_axis,[1,1,NUM_CLASS])
return soft_pl
@tf.function
def TimestampPL(model, aug_manager, X_l, mask_l, y_l, X_u, mask_u, y_u, sigma_t_c, PL_TEST, threshold=0.95, lambd1=1.0, temperature=1, iter=0, total_iter=25000):
aug_weak_l = jittering(X_l)
aug_weak_u = jittering(X_u)
aug_strong_l = jittering(scaling(X_l))
aug_strong_u = jittering(scaling(X_u))
with tf.GradientTape() as tape:
outputs_w_l = model.call_logit(aug_weak_l, training=True, temp=temperature)
outputs_w_u = model.call_logit(aug_weak_u, training=True, temp=temperature)
outputs_s_u = model.call_logit(aug_strong_u, training=True, temp=temperature)
outputs_l_stage = []
outputs_u_stage = []
for output_w_l, output_s_u in zip(outputs_w_l[:-1], outputs_s_u[:-1]):
outputs_l_stage.append(aug_manager.extract_overlap(output_w_l))
outputs_u_stage.append(aug_manager.extract_overlap(output_s_u))
y_l = aug_manager.extract_overlap(y_l)
y_l = tf.cast(y_l, dtype=tf.int32)
mask_l = aug_manager.extract_overlap(mask_l)
mask_l = tf.cast(mask_l, dtype=tf.int32)
outputs_u = tf.nn.softmax(outputs_w_u[-1],axis=2)
outputs_u = aug_manager.extract_overlap(outputs_u)
y_u = aug_manager.extract_overlap(y_u)
y_u = tf.cast(y_u, dtype=tf.int32)
mask_u = aug_manager.extract_overlap(mask_u)
mask_u = tf.cast(mask_u, dtype=tf.int32)
pseudo_labels_u = tf.cast(tf.argmax(tf.stop_gradient(outputs_u), axis=2), dtype=tf.int32)
mask_confidence = tf.cast(tf.reduce_max(tf.stop_gradient(outputs_u), axis=2) >= threshold, dtype=tf.int32)
pseudo_labels_u, pseudo_mask_u, num_pseudo, num_corr_pseudo = merge_pseudo_true_label(y_u, mask_u, pseudo_labels_u, mask_confidence)
loss_pl_balance = pl_entropy_loss(outputs_u, pseudo_mask_u, NUM_CLASS)
loss_l = mstcn_loss(model, outputs_l_stage, y_l, mask_l)
if PL_TEST == 0 and iter > ITER: # FixMatch
loss_u = mstcn_loss(model, outputs_u_stage, pseudo_labels_u, pseudo_mask_u)
loss = loss_l + lambd1 * loss_u
elif PL_TEST == 1 and iter > ITER: # FlexMatch
T_t_c = sigma_t_c/tf.reduce_max(sigma_t_c)*threshold # dynamic thresholds for each class
T_t_c = tf.cast(T_t_c/(2-T_t_c), dtype=tf.float32) # non-linear mapping
pseudo_labels_u = tf.cast(tf.argmax(tf.stop_gradient(outputs_u), axis=2), dtype=tf.int32)
confidence_u = tf.cast(tf.reduce_max(tf.stop_gradient(outputs_u), axis=2), dtype=tf.float32)
batch_timestamp_thresholds = tf.reshape(tf.gather(T_t_c, tf.reshape(pseudo_labels_u,[-1])), confidence_u.shape)
mask_confidence = tf.cast(tf.greater_equal(confidence_u, batch_timestamp_thresholds), dtype=tf.int32)
pseudo_labels_u, pseudo_mask_u, num_pseudo, num_corr_pseudo = merge_pseudo_true_label(y_u, mask_u, pseudo_labels_u, mask_confidence)
sigma_t_c += tf.math.bincount(tf.boolean_mask(pseudo_labels_u, pseudo_mask_u), minlength=NUM_CLASS) # update classwise pl number
loss_u = mstcn_loss(model, outputs_u_stage, pseudo_labels_u, pseudo_mask_u)
loss = loss_l + lambd1 * loss_u
elif PL_TEST == 2 and iter > ITER: # FixMatch + PropReg
loss_u = mstcn_loss(model, outputs_u_stage, pseudo_labels_u, pseudo_mask_u)
loss = loss_l + lambd1 * loss_u + loss_pl_balance
else:
loss_u = tf.constant(0, dtype=tf.float32)
loss = loss_l
gradients = tape.gradient(loss, model.trainable_variables)
model.optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss, loss_l, loss_u, outputs_l_stage[-1], outputs_u, y_u, mask_u, pseudo_labels_u, pseudo_mask_u, mask_confidence, sigma_t_c
def true_class_prob(outputs_u, y_u):
onehot_mask = tf.cast(tf.one_hot(y_u,depth=NUM_CLASS),dtype=tf.bool)
true_class_prob_total = tf.boolean_mask(outputs_u,onehot_mask) # 1D vector comes out
y_squeeze = tf.reshape(y_u,[-1])
true_class_prob_list = []
true_class_prob_average_list = []
for i in range(NUM_CLASS):
classwise_pred = tf.gather_nd(true_class_prob_total, tf.where(y_squeeze == i)).numpy()
true_class_prob_list.append(classwise_pred)
true_class_prob_average_list.append(tf.reduce_mean(classwise_pred).numpy())
return true_class_prob_list, np.array(true_class_prob_average_list)
def iou_weight_generator(context, overlap, receptive):
num_intersection = np.convolve(np.ones(context+overlap), np.ones(receptive), "same")
num_intersection = num_intersection[context:].tolist()
left = num_intersection.copy()
num_intersection.reverse()
right = num_intersection.copy()
return tf.cast(left, dtype=tf.float32), tf.cast(right, dtype=tf.float32)
def dual_batch_timematch(window_length, overlap_length):
X_long, y_long, y_seg_long, file_boundaries = get_dataset(DATA)
mask = np.zeros_like(y_long) # dummy mask
NUM_CLASS = len(np.unique(y_long))
X_long_train, y_long_train, y_seg_long_train, mask_long_train_dummy, file_boundaries_train, X_long_test, \
y_long_test, y_seg_long_test, mask_long_test_dummy, file_boundaries_test = train_test_generator(
X_long, y_long, y_seg_long, mask, file_boundaries, seed=SEED, K=5)
dim = X_long_train.shape[1]
# Model Definition
models = model.MSTCN(NUM_CLASS, lr=lr_dict[DATA], num_dilation=dilation_dict[DATA], num_stage=4, num_filters=emb_dim, total_iter=iter_dict[DATA], warmup_iter=warmup_iter_dict[DATA])
# model initialization
models.call_classifier(np.zeros((1, WINDOW, dim)))
aug_manager = SingleWindow(window_length, overlap_length)
mask_long_train, center_timestamps = aug_manager.sample_first_regions(y_long_train, LABEL_LENGTH, NUM_LABEL_PER_CLASS, SEED)
print(sorted(center_timestamps))
print(f"labeled timestamps: {np.sum(mask_long_train)}, ideal#: {(NUM_CLASS*LABEL_LENGTH*NUM_LABEL_PER_CLASS)},", f"timestamp label percentage{np.sum(mask_long_train)/len(mask_long_train)}")
print(tf.unique_with_counts(tf.boolean_mask(y_long_train, mask_long_train)))
y_train = np.reshape(y_long_train, (len(y_long_train), 1))
mask_train = np.reshape(mask_long_train, (len(mask_long_train), 1))
X_mask_y = np.concatenate((X_long_train, mask_train, y_train), axis=1)
X_mask_y_dataset_labeled = aug_manager.dataloader(X_mask_y=X_mask_y, batch_size=batch_dict_l[DATA], mask=mask_train, center_timestamps=center_timestamps)
X_mask_y_dataset_all = aug_manager.dataloader(X_mask_y=X_mask_y, batch_size=batch_dict_u[DATA])
num_iter = iter_dict[DATA]
num_measurement = iter_dict[DATA]//100
X_mask_y_dataset_labeled = X_mask_y_dataset_labeled.repeat(int(num_iter / len(X_mask_y_dataset_labeled)) + 1).take(num_iter).shuffle(buffer_size=8*batch_dict_l[DATA])
X_mask_y_dataset_all = X_mask_y_dataset_all.repeat(int(num_iter / len(X_mask_y_dataset_all)) + 1).take(num_iter).shuffle(buffer_size=8*batch_dict_u[DATA])
X_mask_y_dataset_labeled_iter = iter(X_mask_y_dataset_labeled)
X_mask_y_dataset_all_iter = iter(X_mask_y_dataset_all)
i,j = 0,0
results = []
results_pl = []
metric_l = []
metric_u = []
y_u_list = []
y_u_batch_list = []
pl_batch_list = []
mask_batch_list = []
pseudo_true_labels_u_list = []
sum_num_corr_pseudo_l, sum_num_pseudo_l, sum_kl_l, sum_num_consistence_l, sum_num_corr_pseudo_u, sum_num_pseudo_u, sum_kl_u, sum_num_consistence_u, sum_num_corr_pseudo_u_conf, sum_num_pseudo_u_conf = 0,0,0,0,0,0,0,0,0,0
sum_pl_per_cls = np.zeros(NUM_CLASS)
pseudo_true_label_flatten_append = np.array([])
true_label_flatten_append = np.array([])
true_classwise_pred_prob_aver_list = []
batch_bar = tqdm(range(num_iter), leave=False, ncols=200, position=0)
sigma_t_c = tf.zeros(NUM_CLASS,dtype=tf.int32) # counting number of PL made at each iteration
for ssl_iter in batch_bar:
X_mask_y_batch_l = X_mask_y_dataset_labeled_iter.get_next()
X_mask_y_batch_u = X_mask_y_dataset_all_iter.get_next()
j+=1
X_l = X_mask_y_batch_l[:, :, :-2]
mask_l = X_mask_y_batch_l[:, :, -2]
y_l = X_mask_y_batch_l[:, :, -1]
X_u = X_mask_y_batch_u[:, :, :-2]
mask_u = X_mask_y_batch_u[:, :, -2]
y_u = X_mask_y_batch_u[:, :, -1]
loss, loss_l, loss_u, outputs_l, outputs_u, y_u, mask_u, pseudo_labels_u, pseudo_mask_u, mask_confidence_u, sigma_t_c \
= TimestampPL(models, aug_manager, X_l, mask_l, y_l, X_u, mask_u, y_u, sigma_t_c=sigma_t_c, temperature=1, PL_TEST=PL_TEST, lambd1=LAMBDA1, iter=tf.constant(j, dtype=tf.float32), total_iter=tf.constant(num_iter, dtype=tf.float32))
pseudo_mask_bool = tf.cast(pseudo_mask_u, dtype=tf.bool)
num_pseudo_u = tf.reduce_sum(pseudo_mask_u)
num_corr_pseudo_u = tf.reduce_sum(tf.cast(tf.boolean_mask(y_u, pseudo_mask_bool) == tf.boolean_mask(pseudo_labels_u, pseudo_mask_bool),dtype=tf.int32))
sum_loss_u = loss_u.numpy()
sum_num_corr_pseudo_u += num_corr_pseudo_u.numpy()
sum_num_pseudo_u += num_pseudo_u.numpy()
pseudo_true_label_flatten = tf.reshape(tf.boolean_mask(pseudo_labels_u, pseudo_mask_u), [-1]).numpy() # masked, flattened pl
true_label_flatten = tf.reshape(tf.boolean_mask(y_u,pseudo_mask_u), [-1]).numpy() # masked, flattened y
pseudo_true_label_flatten_conf = tf.reshape(tf.boolean_mask(pseudo_labels_u, mask_confidence_u), [-1]).numpy()
true_label_flatten_conf = tf.reshape(tf.boolean_mask(y_u, mask_confidence_u), [-1]).numpy()
num_pl_per_cls = np.bincount(pseudo_true_label_flatten, minlength=NUM_CLASS)
sum_pl_per_cls += num_pl_per_cls
num_corr_pseudo_u_conf = np.sum(pseudo_true_label_flatten_conf==true_label_flatten_conf)
num_pseudo_u_conf = np.sum(mask_confidence_u.numpy())
with np.errstate(divide='ignore', invalid='ignore'):
conf_pl_acc = num_corr_pseudo_u_conf/num_pseudo_u_conf
if conf_pl_acc == np.nan:
conf_pl_acc = 0
sum_num_corr_pseudo_u_conf += num_corr_pseudo_u_conf
sum_num_pseudo_u_conf += num_pseudo_u_conf
pl_batch_list.append(pseudo_labels_u.numpy())
mask_batch_list.append(mask_confidence_u.numpy())
y_u_batch_list.append(y_u.numpy())
y_u_list.append(true_label_flatten)
pseudo_true_labels_u_list.append(pseudo_true_label_flatten)
pseudo_true_label_flatten_append = np.append(pseudo_true_label_flatten_append, pseudo_true_label_flatten)
true_label_flatten_append = np.append(true_label_flatten_append, true_label_flatten)
true_classwise_pred_prob_list, true_classwise_pred_prob_aver = true_class_prob(outputs_u, y_u)
true_classwise_pred_prob_aver_list.append(true_classwise_pred_prob_aver)
batch_bar.set_description(f"fixmatch.py {DATA=} {WINDOW=} {OVERLAP=} {PL_TEST=} {SEED=} {GPU=} {loss_l=:.3f} {loss_u=:.3f} num_iter:{j}/{num_iter}")
if (i == num_measurement or j==num_iter):
print("\n")
result = test_model(models, NUM_CLASS, X_long_test, y_long_test, y_seg_long_test, file_boundaries_test)
results.append(result)
with np.errstate(divide='ignore', invalid='ignore'):
metric_u_sum = [sum_num_corr_pseudo_u/sum_num_pseudo_u, sum_num_corr_pseudo_u/num_measurement, sum_num_pseudo_u/num_measurement, (sum_num_corr_pseudo_u/num_measurement)/tf.size(pseudo_labels_u).numpy(), sum_num_consistence_u/num_measurement, sum_num_corr_pseudo_u_conf/sum_num_pseudo_u_conf, sum_num_corr_pseudo_u_conf/num_measurement, sum_num_pseudo_u_conf/num_measurement, sum_loss_u/num_measurement]
metric_u.append(metric_u_sum)
y_u_array = np.concatenate(y_u_list, axis=0)
pseudo_true_labels_u_array = np.concatenate(pseudo_true_labels_u_list, axis=0)
pl_precision, pl_recall = classwise_precision_and_recall(pseudo_true_labels_u_array, y_u_array, num_class=NUM_CLASS)
pl_entropy = class_size_entropy(sum_pl_per_cls,NUM_CLASS)
pl_metric = [pl_entropy]+pl_precision.tolist()+pl_recall.tolist()+sum_pl_per_cls.tolist()
results_pl.append(pl_metric)
print(f"\ntest result\n{result}\nmetric_u_sum\n{metric_u_sum}\npl_precision\n{pl_precision}\npl_entropy\n{pl_entropy}\nsum_pl_per_cls\n{sum_pl_per_cls}")
print()
y_u_list = []
pseudo_true_labels_u_list = []
i=0
sum_num_corr_pseudo_l, sum_num_pseudo_l, sum_kl_l, sum_num_consistence_l, sum_num_corr_pseudo_u, sum_num_pseudo_u, sum_kl_u, sum_num_consistence_u, sum_num_corr_pseudo_u_conf, sum_num_pseudo_u_conf = 0,0,0,0,0,0,0,0,0,0
sum_pl_per_cls = np.zeros(NUM_CLASS)
pseudo_true_label_flatten_append = np.array([])
true_label_flatten_append = np.array([])
i += 1
results = np.array(results)
metric_l = np.array(metric_l)
metric_u = np.array(metric_u)
results_pl = np.array(results_pl)
print(results)
print(metric_l)
print(metric_u)
print(results_pl)
LOG_FILE_NAME = f"FixMatch_{DATA}_{PL_TEST}_{MUL_LABEL_PER_CLASS}_{WINDOW}_{OVERLAP}_{LAMBDA1}_{ITER}_{SEED}"
np.save(os.path.join(os.getcwd(), "metadata", f"Test_{LOG_FILE_NAME}.npy"), results)
np.save(os.path.join(os.getcwd(), "metadata", f"metric_u_{LOG_FILE_NAME}.npy"), metric_u)
np.save(os.path.join(os.getcwd(), "metadata", f"results_pl_{LOG_FILE_NAME}.npy"), results_pl)
print(f"MAX TEST PERFORMANCE: {np.max(results[:, 0])}, {np.max(results[:, 1])}, {np.max(results[:, 2])}")
if __name__=="__main__":
dual_batch_timematch(WINDOW, OVERLAP)