-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils_lvs.py
88 lines (73 loc) · 2.59 KB
/
utils_lvs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import csv
import os
import torch
from torch.optim import *
import torchvision
from torchvision.transforms import *
from scipy import stats
from sklearn import metrics
import numpy as np
import xml.etree.ElementTree as ET
class Evaluator():
def __init__(self):
super(Evaluator, self).__init__()
self.ciou = []
def cal_CIOU(self, infer, gtmap, thres=0.01):
infer_map = np.zeros((224, 224))
infer_map[infer>=thres] = 1
ciou = np.sum(infer_map*gtmap) / (np.sum(gtmap)+np.sum(infer_map*(gtmap==0)))
self.ciou.append(ciou)
return ciou, np.sum(infer_map*gtmap),(np.sum(gtmap)+np.sum(infer_map*(gtmap==0)))
def cal_AUC(self):
results = []
for i in range(21):
result = np.sum(np.array(self.ciou)>=0.05*i)
result = result / len(self.ciou)
results.append(result)
x = [0.05*i for i in range(21)]
auc = sklearn.metrics.auc(x, results)
print(results)
return auc
def final(self):
ciou = np.mean(np.array(self.ciou)>=0.5)
return ciou
def clear(self):
self.ciou = []
def normalize_img(value, vmax=None, vmin=None):
vmin = value.min() if vmin is None else vmin
vmax = value.max() if vmax is None else vmax
if not (vmax - vmin) == 0:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
return value
def testset_gt(args,name):
if args.testset == 'flickr':
gt = ET.parse(args.gt_path + '%s.xml' % name[:-4]).getroot()
gt_map = np.zeros([224,224])
bboxs = []
for child in gt:
for childs in child:
bbox = []
if childs.tag == 'bbox':
for index,ch in enumerate(childs):
if index == 0:
continue
bbox.append(int(224 * int(ch.text)/256))
bboxs.append(bbox)
for item_ in bboxs:
temp = np.zeros([224,224])
(xmin,ymin,xmax,ymax) = item_[0],item_[1],item_[2],item_[3]
temp[item_[1]:item_[3],item_[0]:item_[2]] = 1
gt_map += temp
gt_map /= 2
gt_map[gt_map>1] = 1
elif args.testset == 'vggss':
gt = args.gt_all[name[:-4]]
gt_map = np.zeros([224,224])
for item_ in gt:
item_ = list(map(lambda x: int(224* max(x,0)), item_) )
temp = np.zeros([224,224])
(xmin,ymin,xmax,ymax) = item_[0],item_[1],item_[2],item_[3]
temp[ymin:ymax,xmin:xmax] = 1
gt_map += temp
gt_map[gt_map>0] = 1
return gt_map