-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSEIR_flu_dynamics.m
514 lines (459 loc) · 15.8 KB
/
SEIR_flu_dynamics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
%SEI-Isr-R Model for FLU!!
% to evaluate effect of test-isolation strategy
% Idea is to use the proposed model structure and to tweak the
% parameters/infectiousness function to determine the region in which a
% test-isolation strategy would be reasonably effective for SARS-CoV-2 (and
% compare it to SARS-CoV-1):
% From Ip et al analysis of flu from 2008- 2014 we know:
% infectiousness peaks right at symptom onset
% and that there are ~11% asymptomatic cases, 13% pauci symptomatic, but
% mean viral levels were 1-2log10 levels lower than symptomatic
% typically infectious 2 days before and peak one day after symptom onset
% and continue to be infectious until 6 days after symptom onset
% ideal isolation: 1 day after symptom onset (3 days after infection), 76% isolated
% realistic isolation: 2 days after symptom onset ( 4.5 days after infection), 50% isolated
% Model structure:
% dS/dt = -beta(tau)*S*I;
% dE/dt = beta(tau)*S*I-gamma*E;
% dI/dt = gamma*E - alpha*delta*I -sigma*I
% dIsr/dt = alpha*delta*I -;
% dR/dt = sigma*I;
%June 19 2020
close all; clear all; clc;
%% Make plot of time-dependent infectivity
% pick some gamma hyperparameters that match figure from Ip et al
dtau = 0.1;
tend = 200;
tvec = 0:dtau:tend;
tvec = tvec';
tsym = 1.87;
a = 3.87; %
b = 0.945; % Guess these to match Ip et al figure
beta0 = 2.3;
w_tau = gampdf(tvec, a,b);
disease = 'flu';
figure;
plot(tvec-tsym, beta0.*w_tau, '-', 'LineWidth', 2)
hold on
plot([0, 0], [0 0.28*beta0], 'k--')
legend('\beta(\tau)', 'day of symptom onset')
legend('boxoff')
ylim([0 0.28*beta0])
xlim([ -2 8])
set(gca,'FontSize',16,'LineWidth',1.5)
xlabel ('time since infection (days)')
ylabel ('Infectiousness')
title('Flu')
AUC=sum(w_tau)*dtau*beta0
%% Run SEIR model with & without isolation
% Set IC to a single exposure
S0 = 999;
E0 = 0;
I0 = 1;
Isr0 = 0;
R0 = 0;
y0 = [S0, E0, I0, Isr0, R0];
N = sum(y0);
beta0 = 2.5; % R0 for 1918 flu
gamma = 1/1.6; % 1/gamma = duration exposed but not detectable or infectious
alpha = 0; % alpha = proportion who will become symptomatic and seek testing, 0.76 for ideal
infend = 10; % time to be considered "recovered"
trem = 1+tsym; % time from infeciton to be removed
params = [beta0, gamma, alpha, infend, trem];
tau_params = horzcat(a,b);
dt = 0.1;
tvec = 0:dt:tend;
%% Run ideal isolated and non-isolated scenarios
[y, B, new_inf, beta_t, inf_distrib, Reffn] = fwd_SEIRD_model(params,tau_params, tvec, y0, dt, disease);
ihalf = find(y(:,1)<0.8*N, 1, 'first');
thalf = tvec(ihalf);
totinf = N-y(end,1);
pctinf = 100*totinf/N;
inf = y(:,3)+y(:,4);
peakinf = 100*max(inf)/N;
colorsets1 = varycolor(500);
colorsets = varycolor(7);
figure;
for i = 1:500
plot(tvec, inf_distrib(:,i), '-','color', colorsets1(i,:), 'LineWidth', 2)
hold on
AUCi(round(i/100+1,0))=sum(inf_distrib(:,i));
%text(tauvec(i), inf_distrib(i, i), ['day ', num2str(i*dt)])
end
%legend('day 0', 'day 1', 'day 2', 'day 3', 'day 4', 'day 5', 'day 6')
%legend boxoff
xlim([ 0 14])
xlabel('infection time (\tau) (days)')
ylabel('Number of individuals X infectiousness')
title('Weighted infectiousness if no isolation')
set(gca,'FontSize',16,'LineWidth',1.5)
inf_distribNI=inf_distrib(:,500); % save for comparison figure
inf_distrib1 = inf_distrib;
figure;
subplot(2,2,1)
for i = 1:length(y0)
plot(tvec, y(:,i), '-', 'LineWidth',2)
hold on
end
%plot(thalf, 0.8*N, 'k*', 'LineWidth', 4)
%text(thalf+5, 0.8*N, [num2str(round(thalf,0)), ' days to 20% infected'], 'FontSize', 14)
%text(tvec(end-150),y(end-150,1), [num2str(round(pctinf,0)), '% infected'], 'FontSize',14)
%ylim([ 0 0.1*N])
legend( 'S','E', 'I', 'I_{sr}', 'R', 't_{20% infected}', 'Location', 'NorthWest')
legend boxoff
xlabel('epidemic time (days)')
ylabel('Number of individuals')
set(gca,'FontSize',16,'LineWidth',1.5)
%title(['No isolation'])
title(['No isolation, total infected = ', num2str(round(pctinf,0)),'%'])
%ylim([0 3.5e4])
subplot(2,2,2)
plot(tvec,new_inf/dt,'-', 'color',colorsets(6,:),'LineWidth', 2)
hold on
%plot(tvec, new_exp, 'm-', 'lineWidth', 2)
%plot(t, effI, 'LineWidth', 2)
%legend( 'new infections per day')
%legend boxoff
xlabel('epidemic time (days)')
ylabel('New infections per day')
set(gca,'FontSize',16,'LineWidth',1.5)
%title('Percent growth rate per day')
title(['No isolation ', num2str(round(peakinf,0)),'% infected at peak'])
ylim([0 500])
alpha2 = 0.76; % alpha = proportion who will become symptomatic and seek testing
infend = 10; % time to be considered "recovered"
trem = 1+tsym; % time from infeciton to be removed
params2 = [beta0, gamma, alpha2, infend, trem];
[y, B, new_inf, beta_t, inf_distrib, Reffp] = fwd_SEIRD_model(params2,tau_params, tvec, y0, dt, disease);
% ihalf = find(y(:,1)<0.8*N, 1, 'first');
% thalf = tvec(ihalf);
totinf = N-y(end,1);
pctinf = 100*totinf/N;
inf = y(:,3)+y(:,4);
peakinf = 100*max(inf)/N;
subplot(2,2,3)
for i = 1:length(y0)
plot(tvec, y(:,i), '-', 'LineWidth',2)
hold on
end
% plot(thalf, 0.8*N, 'k*', 'LineWidth', 4)
% text(thalf+5, 0.8*N, [num2str(round(thalf,0)), ' days to 20% infected'], 'FontSize', 14)
%text(tvec(end-150),y(end-150,1), [num2str(round(pctinf,0)), '% infected'], 'FontSize',14)
%ylim([ 0 0.1*N])
legend( 'S','E', 'I', 'I_{sr}', 'R', 't_{20% infected}', 'Location', 'NorthWest')
legend boxoff
xlabel('epidemic time (days)')
ylabel('Number of individuals')
set(gca,'FontSize',16,'LineWidth',1.5)
%title('Perfect symptomatic isolation')
title(['Perfect symptomatic isolation, total infected= ', num2str(round(pctinf,0)),'%'])
%title(['Perfect symptomatic isolation ', num2str(round(pctinf,0)), '% infected total'])
%ylim([0 3.5e4])
subplot(2,2,4)
plot(tvec,new_inf/dt, '-', 'color', colorsets(6,:),'LineWidth', 2)
hold on
%plot(tvec, new_exp, 'm-', 'lineWidth', 2)
%plot(t, effI, 'LineWidth', 2)
%legend( 'new infections per day')
%legend boxoff
xlabel('epidemic time (days)')
ylabel('New infections per day')
set(gca,'FontSize',16,'LineWidth',1.5)
title(['Perfect symptomatic isolation ',num2str(round(peakinf,0)),'% infected at peak'])
ylim([0 500])
%% Plot of individuals at each stage of infection and
figure;
plot(tvec, inf_distrib1(:,1), 'b-', 'LineWidth',5)
hold on
plot(tvec, inf_distrib(:,1), 'r-', 'LineWidth', 5)
for i = 1:500
plot(tvec, inf_distrib1(:,i), 'b-', 'LineWidth',5)
plot(tvec, inf_distrib(:,i), 'r-', 'LineWidth', 5)
hold on
%text(tauvec(i), inf_distrib(i, i), ['day ', num2str(i*dt)])
end
%legend('day 0', 'day 1', 'day 2', 'day 3', 'day 4', 'day 5', 'day 6')
%legend boxoff
AUCNI = sum(inf_distrib1(:,500)).*dt;
AUCPSI = sum(inf_distrib(:,500)).*dt;
legend(['no isolation, AUC= ',num2str(round(AUCNI,0))], ['perfect symptomatic isolation, AUC= ', num2str(round(AUCPSI,1))])
legend boxoff
xlim([ 0 14])
xlabel('infection stage (\tau)(days)')
ylabel('Number of individuals x relative infectiousness')
title('Comparison of weighted infectiousness at t=50 days')
set(gca,'FontSize',16,'LineWidth',1.5)
%% Adjust one parameter at a time form the perfect symptomatic removal scenario
% Effect of increasing the time to removal
trem = tsym;
alpha = 0.76;
params = [beta0, gamma, alpha, infend, trem];
% Time to remove
figure;
tremvec = [tsym+0:2:tsym+8];
alphavec = [0:0.2:0.8];
alphavec = fliplr(alphavec);
paramsi = params;
colorsets2 = varycolor(length(tremvec));
for i = 1:length(tremvec)
paramsi(5) = tremvec(i);
[y, B, new_inf, R_t, new_exp,Reff] = fwd_SEIRD_model(paramsi,tau_params, tvec, y0, dt, disease);
tot_inf = sum(y(:,3));
S_t(:,i) = y(:,1);
new_infi(:,i) = new_inf;
% i20 = find(y(:,1)<0.8*N, 1, 'first');
% t20(i) = tvec(i20);
pct_infected(i) = 100.*(1-(S_t(end,i)./N));
inf = y(:,3)+y(:,4);
peakinf(i) = 100*max(inf)/N;
Reffi(i) = Reff;
end
subplot(3,3,1)
for i = 1:length(tremvec)
plot(tvec, S_t(:,i)/N, '-', 'color', colorsets2(i,:), 'LineWidth',2)
hold on
%text(tvec(20*i), S_t(20*i), ['t_{isolate post symptoms}=', num2str(tremvec(i)-3)], 'FontSize', 14)
end
legend( '0 days', '2 days', '4 days', '6 days', '8 days', 'Location', 'NorthEast')
legend boxoff
xlabel('epidemic time(days)')
ylabel('Proportion not infected')
set(gca,'FontSize',14,'LineWidth',1.5)
%title(' infections over time')
ylim([0 1])
subplot(3,3,2)
for i = 1:length(tremvec)
plot(tvec, new_infi(:,i)./dt, '-', 'color', colorsets2(i,:), 'LineWidth',2)
hold on
%text(tvec(20*i), 100*new_infi(20*i, i)/N, ['t_{isolate post symptoms}=', num2str(tremvec(i)-3)], 'FontSize', 14)
end
legend( '0 days', '2 days', '4 days', '6 days', '8 days')
legend boxoff
xlabel('epidemic time(days)')
ylabel('New infections per day')
set(gca,'FontSize',14,'LineWidth',1.5)
%title('Effect of removal time on growth rate')
ylim([ 0 500])
subplot(3,3,3)
for i = 1:length(tremvec)
plot(tremvec(i)-tsym, Reffi(i), '*','color', colorsets2(i,:), 'LineWidth', 10)
hold on
end
%legend( '0 days', '1 day', '2 days', '3 days', '4 days', '5 days','Location', 'NorthWest')
%legend boxoff
ylim([0 3])
xlabel('Days after symptom onset an individual is isolated')
ylabel('R_{eff}')
set(gca,'FontSize',14,'LineWidth',1.5)
%title('Effect of removal time peak infections')
% Effect of reducing the % removed
trem = tsym;
alpha = 0.76;
params = [beta0, gamma, alpha, infend, trem];
% Time to remove
paramsi = params;
for i = 1:length(alphavec)
paramsi(3) = alphavec(i);
[y, B, new_inf, R_t, new_exp, Reff] = fwd_SEIRD_model(paramsi,tau_params, tvec, y0, dt, disease);
tot_inf = sum(y(:,3));
S_t(:,i) = y(:,1);
new_infi(:,i) = new_inf;
pct_infected(i) = 100.*(1-(S_t(end,i)./N));
inf = y(:,3)+y(:,4);
peakinf(i) = 100*max(inf)/N;
Reffi(i) = Reff;
end
subplot(3,3,4)
for i = 1:length(alphavec)
plot(tvec, S_t(:,i)/N, '-', 'color', colorsets2(i,:), 'LineWidth',2)
hold on
%text(tvec(20*i), S_t(20*i), ['t_{isolate post symptoms}=', num2str(tremvec(i)-3)], 'FontSize', 14)
end
legend( '80% ', '60%', '40%', '20%', '0%', 'Location', 'NorthWest')
legend boxoff
xlabel('epidemic time(days)')
ylabel('Proportion not infected')
set(gca,'FontSize',14,'LineWidth',1.5)
%title(' infections over time')
ylim([0 1])
subplot(3,3,5)
for i = 1:length(alphavec)
plot(tvec, new_infi(:,i)./dt, '-', 'color', colorsets2(i,:), 'LineWidth',2)
hold on
%text(tvec(20*i), 100*new_infi(20*i, i)/N, ['t_{isolate post symptoms}=', num2str(tremvec(i)-3)], 'FontSize', 14)
end
legend( '80% ', '60%', '40%', '20%', '0%')
legend boxoff
xlabel('epidemic time(days)')
ylabel('New infections per day')
set(gca,'FontSize',14,'LineWidth',1.5)
ylim([ 0 500])
%title('Effect of removal time on growth rate')
subplot(3,3,6)
for i = 1:length(alphavec)
plot(100*alphavec(i), Reffi(i), '*','color', colorsets2(i,:), 'LineWidth', 10)
hold on
end
ylim([0 3])
xlabel('Percent of cases isolated')
ylabel('R_{eff}')
set(gca,'FontSize',14,'LineWidth',1.5)
%Ideal vs. Realistic scenario
tremvec = [3, 4, 3];
alphavec = [0.76, 0.5, 0];
colorsets3 = [0 0 1;0 1 0; 1 0 0];
paramsi = params;
for i = 1:length(alphavec)
paramsi(3) = alphavec(i);
paramsi(5) = tremvec(i);
[y, B, new_inf, R_t, new_exp, Reff] = fwd_SEIRD_model(paramsi,tau_params, tvec, y0, dt, disease);
tot_inf = sum(y(:,3));
S_t(:,i) = y(:,1);
new_infi(:,i) = new_inf;
%ihalf = find(y(:,1)<0.5*N, 1, 'first');
%thalf(i) = tvec(ihalf);
pct_infected(i) = 100.*(1-(S_t(end,i)./N));
inf = y(:,3)+y(:,4);
peakinf(i) = 100*max(inf)/N;
Reffi(i) = Reff;
end
% Ideal vs realistic
subplot(3,3,7)
for i = 1:length(alphavec)
plot(tvec, S_t(:,i)/N, '-','color', colorsets3(i,:), 'LineWidth', 2)
hold on
end
legend('perfect', 'realistic','no isolation')
legend boxoff
ylabel('Percent not infected')
xlabel('epidemic time (days)')
set(gca,'FontSize',14,'LineWidth',1.5)
ylim([0 1])
%%title(['Ideal ', num2str(round(pct_infected(1),0)),'% infected vs realistic ', num2str(round(pct_infected(2),0)),'% infected scenarios'])
subplot(3,3,8)
for i=1:length(alphavec)
plot(tvec, new_infi(:,i)/dt, '-', 'color', colorsets3(i,:), 'LineWidth',2)
hold on
end
legend('perfect', 'realistic','no isolation')
legend boxoff
ylabel('New infections per day')
xlabel('epidemic time (days)')
set(gca,'FontSize',14,'LineWidth',1.5)
ylim([ 0 500])
%title('Ideal vs. realistic vs. no isolation epidemic growth rate dynamics')
scenarios = {'perfect symptomatic isolation realistic no isolation'};
subplot(3,3,9)
for i = 1:length(alphavec)
bar( i, Reffi(i), 'FaceColor', colorsets3(i,:))
hold on
end
%legend('perfect', 'realistic','no isolation')
%legend boxoff
set(gca,'FontSize',14,'LineWidth',1.5, 'XTickLabel', [])
ylabel ('R_{eff}')
ylim([0 3])
%% Heatmap of % removed vs time of removal colored by total % infected
alphav = [0:.1:0.9]; % vary % that gets isolated
alphavdense = [0:0.01:0.9];
tremv = [0:1:9]; % vary the time of removal
tremvdense = [0:0.1:9];
[ALPHA,TREM] = meshgrid(alphav,tremv); % big ol grid of parameters
ALPHAflat = reshape(ALPHA,1,[]);
TREMflat = reshape(TREM,1, []);
paramsi = params;
y0i = y0;
I0vec =[0.1 1 10 100];
sdvec = [0.5 0.75 1 1.5];
beta0vec = sdvec.*beta0;
cell{1}.I0 = y0(3);
%% Run a loop to save the time to reach 20% infections distribuion and the
% total number infected distribution
for i = 1:length(beta0vec)
for j = 1:length(ALPHAflat)
paramsi(1) = beta0vec(i);
paramsi(3) = ALPHAflat(j);
paramsi(5) = TREMflat(j);
[y, B, new_inf, R_t, new_exp, Reff] = fwd_SEIRD_model(paramsi,tau_params, tvec, y0i, dt, disease);
tot_inf(j) = sum(y(:,3));
new_infi(:,j) = new_inf;
% iquart = find(y(:,1)<0.8*N, 1, 'first');
% if isnan(iquart)
% tquart(j) = 0;
% end
% if ~isnan(iquart)
% tquart(j) = tvec(iquart);
% end
pct_infected(j) = 100.*(1-(y(end,1)./N));
inf = y(:,3)+y(:,4);
peakinf(j) = 100*max(inf)/N;
Reffj(j) = Reff;
end
PCTINF = reshape(pct_infected, size(ALPHA));
%TQUART = reshape(tquart, size(ALPHA));
PEAKINF = reshape(peakinf, size(ALPHA));
REFF = reshape(Reffj, size(ALPHA));
cell{i}.I0 = y0(3);
cell{i}.R0 = beta0vec(i);
cell{i}.PCTINF = PCTINF;
%cell{i}.TQUART = TQUART;
cell{i}.PEAKINF = PEAKINF;
cell{i}.REFF = REFF;
end
%% Plot heatmaps for total infected, time to 20% infected, and peak infections
figure;
for i = 1:length(beta0vec)
subplot(2, 4, i)
minmax = @(x)([min(x) max(x)]);
imagesc(minmax(1*(alphav)),minmax(tremv-tsym),cell{i}.PCTINF);
[C,h]=contourf(100*ALPHA,TREM-tsym,cell{i}.PCTINF); clabel(C,h);
if i == length(beta0vec)
colorbar;
end
%[C,h]=contourf(ALPHA,TREM,PCTINF); clabel(C,h); colorbar
hold on
%plot(100*alphav, 0*ones(length(alphav),1), 'w--', 'LineWidth', 1.5)
%plot([76 76], [-tsym 9-tsym], 'w--', 'LineWidth', 1.5)
plot([0 76], [0 0], 'g-', 'LineWidth', 3)
plot([76 76], [0 9-tsym], 'g-', 'LineWidth', 3)
plot([0 76], [9-tsym 9-tsym], 'g-', 'LineWidth', 3)
plot( [0 0], [0 9-tsym], 'g-', 'LineWidth', 3)
caxis([0 100]);
colormap(jet);
xlabel('% of population removed');
ylabel('days after symptom onset');
%title(['R_{0}^{flu}= ',num2str(beta0vec(i)), ', total % infected']);
title([num2str(sdvec(i)*100), '% transmission, Total % Infected'])
%title([ num2str(sdvec(i)), 'R_{0}^{flu}, total % infected']);
set(gca,'Ydir','normal'); hold on;
set(gca,'FontSize',16,'LineWidth',1.5)
end
for i =1:length(beta0vec)
subplot(2,4,i+4)
minmax = @(x)([min(x) max(x)]);
imagesc(minmax(1*(alphav)),minmax(tremv-tsym),cell{i}.REFF);
[C,h]=contourf(100*ALPHA,TREM-tsym,cell{i}.REFF); clabel(C,h);
hold on
[x,y,z] = C2xyz(C);
j=find(z==1);
plot(x{j}, y{j}, 'w-', 'LineWidth', 3)
if i == length(beta0vec)
colorbar;
end
%[C,h]=contourf(ALPHA,TREM,PCTINF); clabel(C,h); colorbar
hold on
%plot(100*alphav, 0*ones(length(alphav),1), 'w--', 'LineWidth', 1.5)
%plot([76 76], [-tsym 9-tsym], 'w--', 'LineWidth', 1.5)
plot([0 76], [0 0], 'g-', 'LineWidth', 3)
plot([76 76], [0 9-tsym], 'g-', 'LineWidth', 3)
plot([0 76], [9-tsym 9-tsym], 'g-', 'LineWidth', 3)
plot( [0 0], [0 9-tsym], 'g-', 'LineWidth', 3)
caxis([0 4]);
colormap(jet);
xlabel('% of population removed');
ylabel('days after symptom onset');
title([num2str(sdvec(i)*100), '% transmission, R_{eff}'])
%title(' Peak % infected');
set(gca,'Ydir','normal'); hold on;
set(gca,'FontSize',16,'LineWidth',1.5)
end