-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsave_predictions.py
73 lines (57 loc) · 2.21 KB
/
save_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import json
import numpy as np
WNIDs = None
def get_categories():
"""
Return the first item of each synset of the ilsvrc2012 categories.
Categories are lazy-loaded the first time they are needed.
"""
global WNIDs
if WNIDs is None:
WNIDs = []
cur_dir = os.path.dirname(os.path.realpath(__file__))
with open(os.path.join(cur_dir, "categories.txt")) as f:
for line in f:
category = line.split(" ")[0]
WNIDs.append(category)
return WNIDs
def get_numpy_array(x):
if x.is_cuda:
return x.detach().cpu().numpy()
else:
return x.numpy()
class ImageNetProbabilitiesTo1000ClassesMapping():
"""Return the WNIDs sorted by probabilities."""
def __init__(self):
self.categories = get_categories()
def __call__(self, probabilities):
assert type(probabilities) is np.ndarray
assert (probabilities >= 0.0).all() and (probabilities <= 1.0).all()
sorted_indices = np.flip(np.argsort(probabilities), axis=-1)
return np.take(self.categories, sorted_indices, axis=-1)
def save_to_file(logits, targets, paths):
cur_dir = os.path.dirname(os.path.realpath(__file__))
labels_dir = os.path.join(cur_dir, "labels")
if not os.path.exists(labels_dir):
os.mkdir(labels_dir)
hard_labels_file = os.path.join(labels_dir, "clip_hard_labels.json")
soft_labels_file = os.path.join(labels_dir, "clip_soft_labels.json")
logits = get_numpy_array(logits)
probabilities = ImageNetProbabilitiesTo1000ClassesMapping()(logits)
soft_data = []
hard_data = []
for prob, logit, target, path in zip(probabilities, logits, targets, paths):
imagenet_file = path.split("/")[-1]
soft_labels_dict = {imagenet_file: logit.tolist()}
hard_labels_dict = {imagenet_file: prob[0]}
soft_data.append(soft_labels_dict)
hard_data.append(hard_labels_dict)
with open(soft_labels_file, 'a+') as f1:
for data in soft_data:
f1.write(json.dumps(data))
f1.write(",\n")
with open(hard_labels_file, 'a+') as f2:
for data in hard_data:
f2.write(json.dumps(data))
f2.write(",\n")