-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathoptimizer.py
378 lines (324 loc) · 15.8 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import math
import torch
from torch import optim
def get_optimizer(optim_str, params):
optim_args = {}
optim_args["lr"] = params["learning_rate"]
if optim_str.lower() == "sgd":
optim_args["momentum"] = params["momentum"]
optim_args["weight_decay"] = params["weight_decay"]
optim_args["nesterov"] = True
return optim.SGD, optim_args
elif optim_str.lower() == "novograd":
optim_args["weight_decay"] = params["weight_decay"]
return NovoGrad, optim_args
elif optim_str.lower() == "adabound":
optim_args["weight_decay"] = params["weight_decay"]
optim_args["amsbound"] = True
optim_args["final_lr"] = 0.1
return AdaBound, optim_args
print("Requested optimizer not supported!")
exit(1)
def get_scheduler(sched_str, params):
sched_args = {}
if sched_str.lower() == "steplr":
sched_args["step_size"] = 50
sched_args["gamma"] = 0.1
return optim.lr_scheduler.StepLR, sched_args
elif sched_str.lower() == "multisteplr":
decay_steps = [
int(0.33 * params["epochs"]),
int(0.66 * params["epochs"]),
]
print("Decreasing learning rates at epoch ", end="")
for epoch in decay_steps:
print(f"{epoch} ", end="")
print("")
sched_args["milestones"] = decay_steps
sched_args["gamma"] = 0.1
return optim.lr_scheduler.MultiStepLR, sched_args
elif sched_str.lower() == "reducelronplateau":
sched_args["patience"] = 3
sched_args["gamma"] = 0.1
sched_args["verbose"] = True
return optim.lr_scheduler.ReduceLROnPlateau, sched_args
elif sched_str.lower() == "constant":
# use a constant scheduler, i.e. no scheduler
return DummyScheduler, sched_args
print("Requested optimizer not supported!")
exit(1)
class DummyScheduler():
def __new__(*args, **kwargs):
return None
class AdaBound(optim.Optimizer):
"""Implements AdaBound algorithm.
It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of Learning Rate`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): Adam learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
final_lr (float, optional): final (SGD) learning rate (default: 0.1)
gamma (float, optional): convergence speed of the bound functions (default: 1e-3)
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsbound (boolean, optional): whether to use the AMSBound variant of this algorithm
.. Adaptive Gradient Methods with Dynamic Bound of Learning Rate:
https://openreview.net/forum?id=Bkg3g2R9FX
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3,
eps=1e-8, weight_decay=0, amsbound=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= final_lr:
raise ValueError(
"Invalid final learning rate: {}".format(final_lr))
if not 0.0 <= gamma < 1.0:
raise ValueError("Invalid gamma parameter: {}".format(gamma))
defaults = dict(lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps,
weight_decay=weight_decay, amsbound=amsbound)
super(AdaBound, self).__init__(params, defaults)
self.base_lrs = list(map(lambda group: group['lr'], self.param_groups))
def __setstate__(self, state):
super(AdaBound, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsbound', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group, base_lr in zip(self.param_groups, self.base_lrs):
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Adam does not support sparse gradients, please consider SparseAdam instead')
amsbound = group['amsbound']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if amsbound:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsbound:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsbound:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * \
math.sqrt(bias_correction2) / bias_correction1
# Applies bounds on actual learning rate
# lr_scheduler cannot affect final_lr, this is a workaround to apply lr decay
final_lr = group['final_lr'] * group['lr'] / base_lr
lower_bound = final_lr * \
(1 - 1 / (group['gamma'] * state['step'] + 1))
upper_bound = final_lr * \
(1 + 1 / (group['gamma'] * state['step']))
step_size = torch.full_like(denom, step_size)
step_size.div_(denom).clamp_(
lower_bound, upper_bound).mul_(exp_avg)
p.data.add_(-step_size)
return loss
class AdaBoundW(optim.Optimizer):
"""Implements AdaBound algorithm with Decoupled Weight Decay (arxiv.org/abs/1711.05101)
It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of Learning Rate`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): Adam learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
final_lr (float, optional): final (SGD) learning rate (default: 0.1)
gamma (float, optional): convergence speed of the bound functions (default: 1e-3)
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsbound (boolean, optional): whether to use the AMSBound variant of this algorithm
.. Adaptive Gradient Methods with Dynamic Bound of Learning Rate:
https://openreview.net/forum?id=Bkg3g2R9FX
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), final_lr=0.1, gamma=1e-3,
eps=1e-8, weight_decay=0, amsbound=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= final_lr:
raise ValueError(
"Invalid final learning rate: {}".format(final_lr))
if not 0.0 <= gamma < 1.0:
raise ValueError("Invalid gamma parameter: {}".format(gamma))
defaults = dict(lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps,
weight_decay=weight_decay, amsbound=amsbound)
super(AdaBoundW, self).__init__(params, defaults)
self.base_lrs = list(map(lambda group: group['lr'], self.param_groups))
def __setstate__(self, state):
super(AdaBoundW, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsbound', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group, base_lr in zip(self.param_groups, self.base_lrs):
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Adam does not support sparse gradients, please consider SparseAdam instead')
amsbound = group['amsbound']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if amsbound:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsbound:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsbound:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * \
math.sqrt(bias_correction2) / bias_correction1
# Applies bounds on actual learning rate
# lr_scheduler cannot affect final_lr, this is a workaround to apply lr decay
final_lr = group['final_lr'] * group['lr'] / base_lr
lower_bound = final_lr * \
(1 - 1 / (group['gamma'] * state['step'] + 1))
upper_bound = final_lr * \
(1 + 1 / (group['gamma'] * state['step']))
step_size = torch.full_like(denom, step_size)
step_size.div_(denom).clamp_(
lower_bound, upper_bound).mul_(exp_avg)
if group['weight_decay'] != 0:
decayed_weights = torch.mul(p.data, group['weight_decay'])
p.data.add_(-step_size)
p.data.sub_(decayed_weights)
else:
p.data.add_(-step_size)
return loss
class NovoGrad(optim.Optimizer):
def __init__(self, params, grad_averaging=False, lr=0.1, betas=(0.95, 0.98), eps=1e-8, weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(NovoGrad, self).__init__(params, defaults)
self._lr = lr
self._beta1 = betas[0]
self._beta2 = betas[1]
self._eps = eps
self._wd = weight_decay
self._grad_averaging = grad_averaging
self._momentum_initialized = False
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
if not self._momentum_initialized:
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'NovoGrad does not support sparse gradients')
v = torch.norm(grad)**2
m = grad / (torch.sqrt(v) + self._eps) + self._wd * p.data
state['step'] = 0
state['v'] = v
state['m'] = m
state['grad_ema'] = None
self._momentum_initialized = True
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
state['step'] += 1
step, v, m = state['step'], state['v'], state['m']
grad_ema = state['grad_ema']
grad = p.grad.data
g2 = torch.norm(grad)**2
grad_ema = g2 if grad_ema is None else grad_ema * \
self._beta2 + g2 * (1. - self._beta2)
grad *= 1.0 / (torch.sqrt(grad_ema) + self._eps)
if self._grad_averaging:
grad *= (1. - self._beta1)
g2 = torch.norm(grad)**2
v = self._beta2 * v + (1. - self._beta2) * g2
m = self._beta1 * m + \
(grad / (torch.sqrt(v) + self._eps) + self._wd * p.data)
bias_correction1 = 1 - self._beta1 ** step
bias_correction2 = 1 - self._beta2 ** step
step_size = group['lr'] * \
math.sqrt(bias_correction2) / bias_correction1
state['v'], state['m'] = v, m
state['grad_ema'] = grad_ema
p.data.add_(-step_size, m)
return loss