-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathevaluate.py
176 lines (136 loc) · 7.55 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from __future__ import print_function
import numpy as np
import os, sys
import cv2
from cntk import load_model, Axis, input_variable
from cntk.core import Value
from cntk.io import MinibatchData
from cntk.layers import Constant
from utils.annotations.annotations_helper import parse_class_map_file
from config import cfg
from plot_helpers import visualizeResultsFaster, imsave, apply_nms_to_single_image_results
from cntk_helpers import regress_rois
###############################################################
# Variables
###############################################################
image_width = cfg["CNTK"].IMAGE_WIDTH
image_height = cfg["CNTK"].IMAGE_HEIGHT
num_channels = cfg["CNTK"].NUM_CHANNELS
# dims_input -- (pad_width, pad_height, scaled_image_width, scaled_image_height, orig_img_width, orig_img_height)
dims_input_const = MinibatchData(Value(batch=np.asarray(
[image_width, image_height, image_width, image_height, image_width, image_height], dtype=np.float32)), 1, 1, False)
# Color used for padding and normalization (Caffe model uses [102.98010, 115.94650, 122.77170])
img_pad_value = [103, 116, 123] if cfg["CNTK"].BASE_MODEL == "VGG16" else [114, 114, 114]
normalization_const = Constant([[[103]], [[116]], [[123]]]) if cfg["CNTK"].BASE_MODEL == "VGG16" else Constant([[[114]], [[114]], [[114]]])
globalvars = {}
map_file_path = cfg["CNTK"].MODEL_DIRECTORY
globalvars['class_map_file'] = os.path.join(map_file_path, cfg["CNTK"].CLASS_MAP_FILE)
globalvars['classes'] = parse_class_map_file(globalvars['class_map_file'])
globalvars['num_classes'] = len(globalvars['classes'])
globalvars['temppath'] = cfg["CNTK"].TEMP_PATH
feature_node_name = cfg["CNTK"].FEATURE_NODE_NAME
model_path = os.path.join(cfg["CNTK"].MODEL_DIRECTORY, cfg["CNTK"].MODEL_NAME)
# helper function
def load_resize_and_pad(image_path, width, height, pad_value=114):
if "@" in image_path:
print("WARNING: zipped image archives are not supported for visualizing results.")
exit(0)
img = cv2.imread(image_path)
img_width = len(img[0])
img_height = len(img)
scale_w = img_width > img_height
target_w = width
target_h = height
if scale_w:
target_h = int(np.round(img_height * float(width) / float(img_width)))
else:
target_w = int(np.round(img_width * float(height) / float(img_height)))
resized = cv2.resize(img, (target_w, target_h), 0, 0, interpolation=cv2.INTER_NEAREST)
top = int(max(0, np.round((height - target_h) / 2)))
left = int(max(0, np.round((width - target_w) / 2)))
bottom = height - top - target_h
right = width - left - target_w
resized_with_pad = cv2.copyMakeBorder(resized, top, bottom, left, right,
cv2.BORDER_CONSTANT, value=[pad_value, pad_value, pad_value])
# transpose(2,0,1) converts the image to the HWC format which CNTK accepts
model_arg_rep = np.ascontiguousarray(np.array(resized_with_pad, dtype=np.float32).transpose(2, 0, 1))
dims = (width, height, target_w, target_h, img_width, img_height)
return resized_with_pad, model_arg_rep, dims
# mode="returnimage" or "returntags"
def eval_faster_rcnn(eval_model, imgPath, img_shape,
results_base_path, feature_node_name, classes, mode,
drawUnregressedRois=False, drawNegativeRois=False,
nmsThreshold=0.5, nmsConfThreshold=0.0, bgrPlotThreshold = 0.8):
# prepare model
image_input = input_variable(img_shape, dynamic_axes=[Axis.default_batch_axis()], name=feature_node_name)
dims_input = input_variable((1,6), dynamic_axes=[Axis.default_batch_axis()], name='dims_input')
frcn_eval = eval_model(image_input, dims_input)
#dims_input_const = cntk.constant([image_width, image_height, image_width, image_height, image_width, image_height], (1, 6))
print("Plotting results from Faster R-CNN model for image.")
# evaluate single image
_, cntk_img_input, dims = load_resize_and_pad(imgPath, img_shape[2], img_shape[1])
dims_input = np.array(dims, dtype=np.float32)
dims_input.shape = (1,) + dims_input.shape
output = frcn_eval.eval({frcn_eval.arguments[0]: [cntk_img_input], frcn_eval.arguments[1]: dims_input})
out_dict = dict([(k.name, k) for k in output])
out_cls_pred = output[out_dict['cls_pred']][0]
out_rpn_rois = output[out_dict['rpn_rois']][0]
out_bbox_regr = output[out_dict['bbox_regr']][0]
labels = out_cls_pred.argmax(axis=1)
scores = out_cls_pred.max(axis=1).tolist()
if mode=="returntags":
class Tag(object):
def __init__(self, label, score, bbox):
self.label = label
self.score = score
self.bbox = bbox
def serialize(self):
return {
'label': self.label,
'score': self.score,
'bbox': self.bbox,
}
results = []
for i in range(len(out_rpn_rois)):
if labels[i] != 0:
x = Tag(str(classes[labels[i]]), str(scores[i]), str(out_rpn_rois[i]))
results.append(x)
return results
elif mode=="returnimage":
evaluated_image_path = "{}/{}".format(results_base_path, 'evaluated_' + os.path.basename(imgPath))
if drawUnregressedRois:
# plot results without final regression
imgDebug = visualizeResultsFaster(imgPath, labels, scores, out_rpn_rois, img_shape[2], img_shape[1],
classes, nmsKeepIndices=None, boDrawNegativeRois=drawNegativeRois,
decisionThreshold=bgrPlotThreshold)
imsave(evaluated_image_path, imgDebug)
else:
# apply regression and nms to bbox coordinates
regressed_rois = regress_rois(out_rpn_rois, out_bbox_regr, labels, dims)
nmsKeepIndices = apply_nms_to_single_image_results(regressed_rois, labels, scores,
nms_threshold=nmsThreshold,
conf_threshold=nmsConfThreshold)
img = visualizeResultsFaster(imgPath, labels, scores, regressed_rois, img_shape[2], img_shape[1],
classes, nmsKeepIndices=nmsKeepIndices,
boDrawNegativeRois=drawNegativeRois,
decisionThreshold=bgrPlotThreshold)
imsave(evaluated_image_path, img)
return evaluated_image_path
else:
raise ValueError("Unsupported value found in 'mode' parameter")
# mode="returnimage" or "returntags"
def evaluateimage(file_path, mode, eval_model=None):
#from plot_helpers import eval_and_plot_faster_rcnn
if eval_model==None:
print("Loading existing model from %s" % model_path)
eval_model = load_model(model_path)
img_shape = (num_channels, image_height, image_width)
results_folder = globalvars['temppath']
results=eval_faster_rcnn(eval_model, file_path, img_shape,
results_folder, feature_node_name, globalvars['classes'], mode,
drawUnregressedRois=cfg["CNTK"].DRAW_UNREGRESSED_ROIS,
drawNegativeRois=cfg["CNTK"].DRAW_NEGATIVE_ROIS,
nmsThreshold=cfg["CNTK"].RESULTS_NMS_THRESHOLD,
nmsConfThreshold=cfg["CNTK"].RESULTS_NMS_CONF_THRESHOLD,
bgrPlotThreshold=cfg["CNTK"].RESULTS_BGR_PLOT_THRESHOLD)
return results