-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathemc.py
executable file
·457 lines (401 loc) · 19.8 KB
/
emc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
#!/usr/bin/env python
'''EMC reconstructor object and script'''
import sys
import os
import argparse
import configparser
import time
import numpy as np
from scipy import ndimage
import h5py
from mpi4py import MPI
import cupy as cp
P_MIN = 1.e-6
MEM_THRESH = 0.8
class Dataset():
'''Parses sparse photons dataset from HDF5 file
Args:
photons_file (str): Path to HDF5 photons file
num_pix (int): Expected number of pixels in sparse file
need_scaling (bool, optional): Whether scaling will be used
Returns:
Dataset object with attributes containing photon locations
'''
def __init__(self, photons_file, num_pix, need_scaling=False):
self.powder = None
mpool = cp.get_default_memory_pool()
init_mem = mpool.used_bytes()
self.photons_file = photons_file
self.num_pix = num_pix
with h5py.File(self.photons_file, 'r') as fptr:
if self.num_pix != fptr['num_pix'][...]:
raise AttributeError('Number of pixels in photons file does not match')
self.num_data = fptr['place_ones'].shape[0]
try:
self.ones = cp.array(fptr['ones'][:])
except KeyError:
self.ones = cp.array([len(fptr['place_ones'][i])
for i in range(self.num_data)]).astype('i4')
self.ones_accum = cp.roll(self.ones.cumsum(), 1)
self.ones_accum[0] = 0
self.place_ones = cp.array(np.hstack(fptr['place_ones'][:]))
try:
self.multi = cp.array(fptr['multi'][:])
except KeyError:
self.multi = cp.array([len(fptr['place_multi'][i])
for i in range(self.num_data)]).astype('i4')
self.multi_accum = cp.roll(self.multi.cumsum(), 1)
self.multi_accum[0] = 0
self.place_multi = cp.array(np.hstack(fptr['place_multi'][:]))
self.count_multi = np.hstack(fptr['count_multi'][:])
self.mean_count = float((self.place_ones.shape[0] +
self.count_multi.sum()
) / self.num_data)
if need_scaling:
self.counts = self.ones + cp.array([self.count_multi[m_a:m_a+m].sum()
for m, m_a in zip(self.multi.get(), self.multi_accum.get())])
self.count_multi = cp.array(self.count_multi)
try:
self.bg = cp.array(fptr['bg'][:]).ravel()
print('Using background model with %.2f photons/frame' % self.bg.sum())
except KeyError:
self.bg = cp.zeros(self.num_pix)
self.mem = mpool.used_bytes() - init_mem
def get_powder(self):
if self.powder is not None:
return self.powder
self.powder = np.zeros(self.num_pix)
np.add.at(self.powder, self.place_ones.get(), 1)
np.add.at(self.powder, self.place_multi.get(), self.count_multi.get())
self.powder /= self.num_data
self.powder = cp.array(self.powder)
return self.powder
class EMC():
'''Reconstructor object using parameters from config file
Args:
config_file (str): Path to configuration file
The appropriate CUDA device must be selected before initializing the class.
Can be used with mpirun, in which case work will be divided among ranks.
'''
def __init__(self, config_file, num_streams=4):
self.num_streams = num_streams
self.comm = MPI.COMM_WORLD
self.rank = self.comm.rank
self.num_proc = self.comm.size
self.mem_size = cp.cuda.Device(cp.cuda.runtime.getDevice()).mem_info[1]
config = configparser.ConfigParser()
config.read(config_file)
self.size = config.getint('parameters', 'size')
self.num_modes = config.getint('emc', 'num_modes', fallback=1)
self.num_rot = config.getint('emc', 'num_rot')
self.photons_file = os.path.join(os.path.dirname(config_file),
config.get('emc', 'in_photons_file'))
self.output_folder = os.path.join(os.path.dirname(config_file),
config.get('emc', 'output_folder', fallback='data/'))
self.log_file = os.path.join(os.path.dirname(config_file),
config.get('emc', 'log_file', fallback='EMC.log'))
self.need_scaling = config.getboolean('emc', 'need_scaling', fallback=False)
dia = tuple([float(s) for s in config.get('emc', 'sphere_dia').split()])
sx = (float(s) for s in config.get('emc', 'shiftx').split())
sy = (float(s) for s in config.get('emc', 'shifty').split())
self.shiftx, self.shifty, self.sphere_dia = np.meshgrid(np.linspace(*sx), np.linspace(*sy), np.linspace(*dia), indexing='ij')
self.shiftx = self.shiftx.ravel()
self.shifty = self.shifty.ravel()
self.sphere_dia = self.sphere_dia.ravel()
self.num_states = len(self.shiftx)
print(self.num_states, 'sampled states')
self.x_ind, self.y_ind = cp.indices((self.size,)*2, dtype='f8')
self.x_ind = self.x_ind.ravel() - self.size // 2
self.y_ind = self.y_ind.ravel() - self.size // 2
self.rad = cp.sqrt(self.x_ind**2 + self.y_ind**2)
self.invmask = cp.zeros(self.size**2, dtype=np.bool)
self.invmask[self.rad<4] = True
self.invmask[self.rad>=self.size//2] = True
self.intinvmask = self.invmask.astype('i4')
self.invsuppmask = cp.ones((self.size,)*2, dtype=np.bool)
self.invsuppmask[66:119,66:119] = False
self.probmask = cp.zeros(self.size**2, dtype='i4')
self.probmask[self.rad>=self.size//2] = 2
self.probmask[self.rad<self.size//8] = 1
self.probmask[self.rad<4] = 2
self.sphere_ramps = [self.ramp(i)*self.sphere(i) for i in range(self.num_states)]
self.sphere_intens = cp.abs(cp.array(self.sphere_ramps[:int(dia[2])])**2).mean(0)
stime = time.time()
self.dset = Dataset(self.photons_file, self.size**2, self.need_scaling)
self.powder = self.dset.get_powder()
etime = time.time()
if self.rank == 0:
print('%d frames with %.3f photons/frame (%.3f s) (%.2f MB)' % \
(self.dset.num_data, self.dset.mean_count, etime-stime, self.dset.mem/1024**2))
sys.stdout.flush()
self.model = np.empty((self.size**2,), dtype='c16')
if self.rank == 0:
# Random model
rmodel = np.random.random((self.size,)*2)
rmodel[self.invsuppmask.get()] = 0
self.model = np.fft.fftshift(np.fft.fftn(np.fft.ifftshift(rmodel))).flatten()
self.model /= 2e3
# Solution as init
#with h5py.File('data/holo_dia.h5', 'r') as f:
# sol = f['solution'][:]
#self.model = np.fft.fftshift(np.fft.fftn(np.fft.ifftshift(sol))).ravel() / 1.e3
self.model[self.invmask.get()] = 0
np.save('data/model_000.npy', self.model)
self.comm.Bcast([self.model, MPI.C_DOUBLE_COMPLEX], root=0)
if self.need_scaling:
self.scales = self.dset.counts / self.dset.mean_count
else:
self.scales = cp.ones(self.dset.num_data, dtype='f8')
self.prob = cp.array([])
with open('kernels.cu', 'r') as f:
kernels = cp.RawModule(code=f.read())
self.k_slice_gen = kernels.get_function('slice_gen')
self.k_slice_merge = kernels.get_function('slice_merge')
self.k_slice_gen_holo = kernels.get_function('slice_gen_holo')
self.k_calc_prob_all = kernels.get_function('calc_prob_all')
self.k_merge_all = kernels.get_function('merge_all')
self.k_proj_divide = kernels.get_function('proj_divide')
self.bsize_model = int(np.ceil(self.size/32.))
self.bsize_data = int(np.ceil(self.dset.num_data/32.))
self.stream_list = [cp.cuda.Stream() for _ in range(self.num_streams)]
def run_iteration(self, iternum=None):
'''Run one iterations of EMC algorithm
Args:
iternum (int, optional): If specified, output is tagged with iteration number
Current guess is assumed to be in self.model, which is updated. If scaling is included,
the scale factors are in self.scales.
'''
self.num_states_p = np.arange(self.rank, self.num_states, self.num_proc).size
mem_frac = self.num_states_p*self.dset.num_data*8/ (self.mem_size - self.dset.mem)
num_blocks = int(np.ceil(mem_frac / MEM_THRESH))
block_sizes = np.array([self.dset.num_data // num_blocks] * num_blocks)
block_sizes[0:self.dset.num_data % num_blocks] += 1
if self.prob.shape != (self.num_states_p*self.num_rot, block_sizes.max()):
self.prob = cp.empty((self.num_states_p*self.num_rot, block_sizes.max()), dtype='f8')
views = cp.empty((self.num_streams, self.size**2), dtype='f8')
intens = cp.empty((self.num_states, self.size**2), dtype='f8')
dmodel = cp.array(self.model.ravel())
#mp = cp.get_default_memory_pool()
#print('Mem usage: %.2f MB / %.2f MB' % (mp.total_bytes()/1024**2, self.mem_size/1024**2))
b_start = 0
for b in block_sizes:
drange = (b_start, b_start + b)
self._calculate_prob(dmodel, views, drange)
self._normalize_prob()
self._update_model(intens, dmodel, drange)
b_start += b
self._normalize_model(intens, dmodel, iternum)
def _calculate_prob(self, dmodel, views, drange):
s = drange[0]
e = drange[1]
num_data_b = e - s
self.bsize_data = int(np.ceil(num_data_b/32.))
selmask = (self.probmask < 1)
sum_views = cp.zeros_like(views)
msums = cp.empty(self.num_states_p)
rot_views = cp.empty_like(views)
for i, r in enumerate(range(self.rank, self.num_states, self.num_proc)):
snum = i % self.num_streams
self.stream_list[snum].use()
self.k_slice_gen_holo((self.bsize_model,)*2, (32,)*2,
(dmodel, self.shiftx[r], self.shifty[r], self.sphere_dia[r], 1.,
1., self.size, self.dset.bg, 0, views[snum]))
msums[i] = views[snum][selmask].sum()
sum_views[snum] += views[snum]
[s.synchronize() for s in self.stream_list]
cp.cuda.Stream().null.use()
vscale = self.powder[selmask].sum() / sum_views.sum(0)[selmask].sum() * self.num_states_p
for i, r in enumerate(range(self.rank, self.num_states, self.num_proc)):
snum = i % self.num_streams
self.stream_list[snum].use()
self.k_slice_gen_holo((self.bsize_model,)*2, (32,)*2,
(dmodel, self.shiftx[r], self.shifty[r], self.sphere_dia[r], 1.,
1., self.size, self.dset.bg, 0, views[snum]))
for j in range(self.num_rot):
self.k_slice_gen((self.bsize_model,)*2, (32,)*2,
(views[snum], j*np.pi/self.num_rot, 1.,
self.size, self.dset.bg, 1, rot_views[snum]))
self.k_calc_prob_all((self.bsize_data,), (32,),
(rot_views[snum], self.probmask, num_data_b,
self.dset.ones[s:e], self.dset.multi[s:e],
self.dset.ones_accum[s:e], self.dset.multi_accum[s:e],
self.dset.place_ones, self.dset.place_multi, self.dset.count_multi,
-float(msums[i]*vscale), self.scales[s:e], self.prob[i*self.num_rot+j]))
[s.synchronize() for s in self.stream_list]
cp.cuda.Stream().null.use()
def _normalize_prob(self):
max_exp_p = self.prob.max(0).get()
rmax_p = self.prob.argmax(axis=0).get().astype('i4')
rmax_p = ((rmax_p//self.num_rot)*self.num_proc + self.rank)*self.num_rot + rmax_p%self.num_rot
max_exp = np.empty_like(max_exp_p)
self.rmax = np.empty_like(rmax_p)
self.comm.Allreduce([max_exp_p, MPI.DOUBLE], [max_exp, MPI.DOUBLE], op=MPI.MAX)
rmax_p[max_exp_p != max_exp] = -1
self.comm.Allreduce([rmax_p, MPI.INT], [self.rmax, MPI.INT], op=MPI.MAX)
max_exp = cp.array(max_exp)
self.prob = cp.exp(cp.subtract(self.prob, max_exp, self.prob), self.prob)
psum_p = self.prob.sum(0).get()
psum = np.empty_like(psum_p)
self.comm.Allreduce([psum_p, MPI.DOUBLE], [psum, MPI.DOUBLE], op=MPI.SUM)
self.prob = cp.divide(self.prob, cp.array(psum), self.prob)
#self.prob.clip(a_min=P_MIN, out=self.prob)
np.save('data/prob.npy', self.prob.get())
def _update_model(self, intens, dmodel, drange):
p_norm = self.prob.reshape(self.num_states, self.num_rot, self.dset.num_data).sum((1,2))
h_p_norm = p_norm.get()
s = drange[0]
e = drange[1]
num_data_b = e - s
rot_views = cp.zeros((self.num_streams,)+intens[0].shape)
mweights = cp.zeros((self.num_streams,)+intens[0].shape)
intens[:] = 0
for i, r in enumerate(range(self.rank, self.num_states, self.num_proc)):
if h_p_norm[i] == 0.:
continue
snum = i % self.num_streams
self.stream_list[snum].use()
mweights[snum,:] = 0
for j in range(self.num_rot):
rot_views[snum,:] = 0
self.k_merge_all((self.bsize_data,), (32,),
(self.prob[i*self.num_rot + j], num_data_b,
self.dset.ones[s:e], self.dset.multi[s:e],
self.dset.ones_accum[s:e], self.dset.multi_accum[s:e],
self.dset.place_ones, self.dset.place_multi, self.dset.count_multi,
rot_views[snum]))
self.k_slice_merge((self.bsize_model,)*2, (32,)*2,
(rot_views[snum], j*np.pi/self.num_rot, self.size,
intens[r], mweights[snum]))
sel = (mweights[snum] > 0)
intens[r][sel] /= mweights[snum][sel]
intens[r] = intens[r] / p_norm[i] - self.dset.bg
# Centrosymmetrization
intens2d = intens[r].reshape(185,185)
intens2d = 0.5 * (intens2d + intens2d[::-1,::-1])
intens[r] = intens2d.ravel()
[s.synchronize() for s in self.stream_list]
cp.cuda.Stream().null.use()
def _normalize_model(self, intens, dmodel, iternum):
self.comm.Allreduce(MPI.IN_PLACE, [intens.get(), MPI.DOUBLE], op=MPI.SUM)
if self.rank == 0:
sel = (self.rad > self.size//4) & (self.rad < self.size//2)
mscale = float(cp.dot(self.sphere_intens[sel], intens.mean(0)[sel]) / cp.linalg.norm(intens.mean(0)[sel])**2)
fobs = cp.sqrt(intens * mscale)
print('mscale =', mscale)
iter_curr = cp.empty(intens.shape, dtype='c16')
iter_curr[:] = dmodel.ravel()
iter_curr[:,self.invmask] = 0
iter_p1 = cp.empty_like(iter_curr)
for i in range(10):
iter_curr = self.er(iter_curr, fobs, iter_p1)
for i in range(40):
iter_curr = self.diffmap(iter_curr, fobs, iter_p1)
#for i in range(50):
# iter_curr = self.er(iter_curr, fobs)
dmodel = self.proj_concur(iter_curr)[0]
self.model = dmodel.get()
if iternum < 5 or iternum % 5 == 0:
amodel = np.abs(np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(self.model.reshape((self.size,)*2)))))
if iternum <= 5:
sigma = 3
else:
sigma = 2
famodel = ndimage.gaussian_filter(amodel, sigma)
thresh = np.sort(famodel.ravel())[int(0.94*amodel.size)]
self.invsuppmask = cp.array(famodel < thresh)
if iternum is None:
np.save('data/model.npy', self.model)
else:
np.save('data/model_%.3d.npy'%iternum, self.model)
np.save('data/intens_%.3d.npy'%iternum, intens.get())
np.save('data/rmax_%.3d.npy'%iternum, self.rmax)
np.save('data/invsupp_%.3d.npy'%iternum, self.invsuppmask)
self.model[self.invmask.get()] = 0
self.comm.Bcast([self.model, MPI.C_DOUBLE_COMPLEX], root=0)
def ramp(self, n):
return cp.exp(1j*2.*cp.pi*(self.x_ind*self.shiftx[n] + self.y_ind*self.shifty[n])/self.size)
def sphere(self, n, diameter=None):
if n is None:
dia = diameter
else:
dia = self.sphere_dia[n]
s = cp.pi * self.rad * dia / self.size
s[s==0] = 1.e-5
return ((cp.sin(s) - s*cp.cos(s)) / s**3).ravel()
def proj_divide(self, iter_in, data, iter_out):
for n in range(self.num_states):
snum = n % self.num_streams
self.stream_list[snum].use()
self.k_proj_divide((self.size*self.size//32 + 1,), (32,),
(iter_in[n], data[n], self.sphere_ramps[n],
self.intinvmask, self.size, iter_out[n]))
[s.synchronize() for s in self.stream_list]
cp.cuda.Stream().null.use()
def proj_concur(self, iter_in, supp=True):
iter_out = cp.empty_like(iter_in)
avg = iter_in.mean(0)
if supp:
favg = cp.fft.fftshift(cp.fft.ifftn(avg.reshape(self.size, self.size)))
favg[self.invsuppmask] = 0
avg = cp.fft.fftn(cp.fft.ifftshift(favg)).ravel()
iter_out[:] = avg
return iter_out
def diffmap(self, iterate, fobs, p1):
self.proj_divide(iterate, fobs, p1)
return iterate + self.proj_concur(2. * p1 - iterate) - p1
def er(self, iterate, fobs, p1):
self.proj_divide(iterate, fobs, p1)
return self.proj_concur(p1)
def main():
'''Parses command line arguments and launches EMC reconstruction'''
import socket
parser = argparse.ArgumentParser(description='In-plane rotation EMC')
parser.add_argument('num_iter', type=int,
help='Number of iterations')
parser.add_argument('-c', '--config_file', default='config.ini',
help='Path to configuration file (default: config.ini)')
parser.add_argument('-d', '--devices', default=None,
help='Path to devices file')
parser.add_argument('-s', '--streams', type=int, default=4,
help='Number of streams to use (default=4)')
args = parser.parse_args()
comm = MPI.COMM_WORLD
rank = comm.rank
num_proc = comm.size
if args.devices is None:
if num_proc == 1:
print('Running on default device 0')
else:
print('Require a "devices" file if using multiple processes (one number per line)')
sys.exit(1)
else:
with open(args.devices) as f:
dev = int(f.readlines()[rank].strip())
print('Rank %d: %s (Device %d)' % (rank, socket.gethostname(), dev))
sys.stdout.flush()
cp.cuda.Device(dev).use()
recon = EMC(args.config_file, num_streams=args.streams)
logf = open('EMC.log', 'w')
if rank == 0:
logf.write('Iter time(s) change\n')
logf.flush()
avgtime = 0.
numavg = 0
for i in range(args.num_iter):
m0 = cp.array(recon.model)
stime = time.time()
recon.run_iteration(i+1)
etime = time.time()
sys.stderr.write('\r%d/%d (%f s)'% (i+1, args.num_iter, etime-stime))
if rank == 0:
norm = float(cp.linalg.norm(cp.array(recon.model) - m0))
logf.write('%-6d%-.2e %e\n' % (i+1, etime-stime, norm))
logf.flush()
if i > 0:
avgtime += etime-stime
numavg += 1
if rank == 0 and numavg > 0:
print('\n%.4e s/iteration on average' % (avgtime / numavg))
logf.close()
if __name__ == '__main__':
main()