-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfid_evaluation.py
336 lines (283 loc) · 15.9 KB
/
fid_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from __future__ import print_function
import os, shutil, time, math, glob, copy, argparse, importlib
import torch
import torch_fidelity
from torchvision.utils import save_image
from pytorch_fid import fid_score
import datasets
from tqdm import tqdm
import curriculums
from generators import generators_MPI_learn_hd as generators
from siren import siren
from logging import shutdown
import numpy as np
from collections import deque
from yaml import parse
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torchvision.utils import save_image
import torchvision.transforms as transforms
from scipy.io import loadmat
import fid_evaluation
from datetime import datetime
from torch_ema import ExponentialMovingAverage
from torch.utils.tensorboard import SummaryWriter
import util
from PIL import Image
device = torch.device('cuda')
def staged_forward(fixed_exp_z, fixed_id_z, fixed_noise_z, generator_ddp, deform_ddp, vae_net_id, vae_net_exp, stage, alpha, metadata, opt):
'''
real_imgs -
generator_ddp -
ema, ema2 -
alpha - the prograssive growing factor, either 1 or below 1
scalar - the image scale ?
metadata - config files
'''
device = fixed_exp_z.device
img_size = metadata['img_size']
batch_size = fixed_exp_z.shape[0]
z_exp = fixed_exp_z
z_id = fixed_id_z
noise = fixed_noise_z
neutral_face_flag = False
split_batch_size = z_exp.shape[0] # minibatch split for memory reduction
# batch split - the number of splited batches
with torch.no_grad():
pixels_all = []
depth_all = []
pose_all = []
intersections_deform_all = []
intersections_canonic_all = []
is_valid_all = []
for split in range(1):
subset_z_exp = z_exp[split * split_batch_size:(split+1) * split_batch_size]
subset_z_id = z_id[split * split_batch_size:(split+1) * split_batch_size]
subset_noise = noise[split * split_batch_size:(split+1) * split_batch_size]
# ------------------------------------------ obtain 3dmm neutral face here-------------------------------------------
t = time.time()
z = torch.cat([subset_z_id, subset_noise], dim=1)
batch_size = subset_z_exp.size()[0]
raw_frequencies, raw_phase_shifts = generator_ddp.siren.mapping_network(z)
truncated_frequencies = raw_frequencies
truncated_phase_shifts = raw_phase_shifts
wp_sample_deform, wp_inter_back_deform, levels, w_ray_origins, w_ray_directions, pitch, yaw, _ = generator_ddp.generate_points(subset_z_exp.size()[0], subset_z_exp.device, **metadata)
gen_positions, output, intersections_deform, intersections_canonical, is_valid = \
generator_ddp.forward(subset_z_id, subset_z_exp, subset_noise, \
wp_sample_deform, wp_inter_back_deform, levels, w_ray_origins, w_ray_directions, pitch, yaw, \
neutral_face_flag, deform_ddp, alpha, metadata, \
freq=truncated_frequencies, phase=truncated_phase_shifts, stage_forward_flag=True)
gen_imgs, depth, weights, transparency = output
pixels_all.append(gen_imgs)
pixels_all_cat = torch.cat([p for p in pixels_all], dim=0) # 16 x 64 x 64 x 3
pixels_all_cat = pixels_all_cat.cpu()
return pixels_all_cat
def output_real_images(dataloader, num_imgs, real_dir):
img_counter = 0
batch_size = dataloader.batch_size
dataloader = iter(dataloader)
for i in range(num_imgs//batch_size):
#print(next(dataloader))
real_imgs, _ = next(dataloader)
for img in real_imgs:
save_image(img, os.path.join(real_dir, f'{img_counter:0>5}.png'), normalize=True, range=(-1, 1))
img_counter += 1
def setup_evaluation(dataset_name, dataset, generated_dir, target_size=128):
# Only make real images if they haven't been made yet
real_dir = os.path.join('EvalImages', dataset_name + '_real_images_' + str(target_size))
dataset = getattr(datasets, metadata['dataset'])(opt, **metadata)
dataloader, _ = datasets.get_dataset(dataset, batch_size=1)
print(dataset)
if not os.path.exists(real_dir):
os.makedirs(real_dir)
print('outputting real images...')
output_real_images(dataloader, 5000, real_dir)
print('...done')
os.makedirs(generated_dir, exist_ok=True)
return real_dir#, dataloader
def output_images(dataloader, generator, deform, input_metadata, rank, world_size, output_dir, alpha, num_imgs=10):
# function of generating images using identity and expression from dataset
metadata = copy.deepcopy(input_metadata)
metadata['img_size'] = 128
metadata['batch_size'] = 4
metadata['h_stddev'] = metadata.get('h_stddev_eval', metadata['h_stddev'])
metadata['v_stddev'] = metadata.get('v_stddev_eval', metadata['v_stddev'])
metadata['sample_dist'] = metadata.get('sample_dist_eval', metadata['sample_dist'])
metadata['psi'] = 1
img_counter = rank
generator.eval()
deform.eval()
img_counter = rank
if rank == 0: pbar = tqdm("generating images", total = num_imgs)
batch_size = dataloader.batch_size
dataloader = iter(dataloader)
with torch.no_grad():
while img_counter < num_imgs:
_, _, _, _, _, _, id_z, exp_z = next(dataloader)
device = generator.module.device
noise_z = torch.randn((metadata['batch_size'], 80), device=device)
id_z = id_z.to(device)
exp_z = exp_z.to(device)
generated_imgs = staged_forward(exp_z, id_z, noise_z, generator, deform, 1.0, stage=input_metadata['img_size'], alpha=alpha, metadata=metadata)[0]
for img in generated_imgs:
save_image(img, os.path.join(output_dir, f'{img_counter:0>5}.png'), normalize=True, range=(-1, 1))
img_counter += world_size
if rank == 0: pbar.update(world_size)
if rank == 0: pbar.close()
def calculate_fid(dataset_name, generated_dir, target_size=128):
real_dir = os.path.join('EvalImages', 'real' + '_real_images_' + str(target_size))
print(real_dir, generated_dir)
for i in range(10):
try:
fid = fid_score.calculate_fid_given_paths([real_dir, generated_dir], 128, 'cuda', 2048)
break
except:
print('failed to load evaluation images, try %02d times'%i)
time.sleep(0.5)
torch.cuda.empty_cache()
return fid
def z_sampler(shape, device, dist):
if dist == 'gaussian':
z = torch.randn(shape, device=device)
# torch.randn - sample random numbers from a normal distribution with mean 0 and varaiance 1
elif dist == 'uniform':
z = torch.rand(shape, device=device) * 2 - 1
# torch.rand - sample random numbers froma uniform distribution
return z
def sample_latents(bs, device, vae_net_id, vae_net_exp, metadata):
with torch.no_grad():# 80-identity, 64-expression
normal_id = z_sampler((bs, metadata['latent_dim']), device=device, dist='gaussian')
normal_exp = z_sampler((bs, metadata['latent_dim']), device=device, dist='gaussian')
z_id = vae_net_id.decode(normal_id)
z_exp = vae_net_exp.decode(normal_exp)
return z_id, z_exp
if __name__ == '__main__':
# os.environ["CUDA_VISIBLE_DEVICES"] = '1'
parser = argparse.ArgumentParser()
parser.add_argument('--generator_file', type=str, default='results/20220507-185825_warm_up_deform_2000_switch_interval_3_DIF_lambda_0_ths_0.000010/step115000_generator.pth')
parser.add_argument('--deform_file', type=str, default='results/20220507-185825_warm_up_deform_2000_switch_interval_3_DIF_lambda_0_ths_0.000010/step115000_dif.pth')
# parser.add_argument('discriminator_file', type=str)
parser.add_argument('--output_dir', type=str, default='generate_imgs1k/20220510-123836_warm_up_deform_2000_switch_interval_3_DIF_lambda_0_ths_0.000010/')
parser.add_argument('--curriculum', type=str, default='SPATIALSIRENBASELINEGRAM_deform_bs4split2_de1rgb1_t')
parser.add_argument('--num_images', type=int, default=5000)
parser.add_argument('--gpu_type', type=str, default='8000')
parser.add_argument('--keep_percentage', type=float, default='1.0')
parser.add_argument('--ema', action='store_true')
parser.add_argument('--max_batch_size', type=int, default=None)
parser.add_argument('--debug_mode', action='store_true')
parser.add_argument('--checkpoints_dir', type=str, default='./FaceRecon_Pytorch/checkpoints', help='models are saved here')
parser.add_argument('--vis_batch_nums', type=float, default=1, help='batch nums of images for visulization')
parser.add_argument('--eval_batch_nums', type=float, default=float('inf'), help='batch nums of images for evaluation')
parser.add_argument('--use_ddp', type=util.str2bool, nargs='?', const=True, default=True, help='whether use distributed data parallel')
parser.add_argument('--ddp_port', type=str, default='12355', help='ddp port')
parser.add_argument('--display_per_batch', type=util.str2bool, nargs='?', const=True, default=True, help='whether use batch to show losses')
parser.add_argument('--add_image', type=util.str2bool, nargs='?', const=True, default=True, help='whether add image to tensorboard')
parser.add_argument('--world_size', type=int, default=1, help='batch nums of images for evaluation')
parser.add_argument('--sample_3dmm', type=float, default=0.1, help='the gen points threshold')
parser.add_argument('--gen_points_threshold', type=float, default=0.00005, help='the gen points threshold')
parser.add_argument('--model', type=str, default='facerecon', help='chooses which model to use.')
# additional parameters
parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')
# self.initialized = True
parser.add_argument('--net_recon', type=str, default='resnet50', choices=['resnet18', 'resnet34', 'resnet50'], help='network structure')
parser.add_argument('--init_path', type=str, default='./FaceRecon_Pytorch/checkpoints/init_model/resnet50-0676ba61.pth')
parser.add_argument('--use_last_fc', type=util.str2bool, nargs='?', const=True, default=False, help='zero initialize the last fc')
parser.add_argument('--bfm_folder', type=str, default='./FaceRecon_Pytorch/BFM')
parser.add_argument('--bfm_model', type=str, default='BFM_model_front.mat', help='bfm model')
# renderer parameters
parser.add_argument('--focal', type=float, default=1015.)
parser.add_argument('--center', type=float, default=112.)
parser.add_argument('--camera_d', type=float, default=10.)
parser.add_argument('--z_near', type=float, default=5.)
parser.add_argument('--z_far', type=float, default=15.)
parser.add_argument('--to_gram', type=str, default='v1')
parser.add_argument('--gen_video', action='store_true', help='whether generate video')
parser.add_argument('--use_depth', action='store_true', help='whether use depth loss for geomotry generation')
opt = parser.parse_args()
if '6' in opt.gpu_type:
max_batch_size = 2400000
else:
max_batch_size = 94800000
if opt.max_batch_size != None:
max_batch_size = opt.max_batch_size
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
curriculum = getattr(curriculums, opt.curriculum)
curriculum['dataset'] = 'FFHQ128'
metadata = curriculums.extract_metadata(curriculum, 0)
metadata['img_size'] = 128
metadata['batch_size'] = 4
metadata['h_stddev'] = metadata.get('h_stddev_eval', metadata['h_stddev'])
metadata['v_stddev'] = metadata.get('v_stddev_eval', metadata['v_stddev'])
metadata['sample_dist'] = metadata.get('sample_dist_eval', metadata['sample_dist'])
metadata['psi'] = 1.0
metadata['num_steps'] = 24
metadata['final_num_steps'] = 24
metadata['nerf_noise'] = 0
metadata['interval_scale'] = 1.
metadata['has_back'] = True
metadata['last_back'] = False
metadata['white_back'] = False
metadata['phase_noise'] = False
metadata['delta_final'] = 1e10
metadata['hierarchical_sample'] = 1
metadata['lock_view_dependence'] = True
metadata['train_coarse'] = True
metadata['levels_start'] = 23
metadata['levels_end'] = 8
metadata['use_alpha'] = True
metadata['num_levels'] = metadata['num_steps'] - 1
metadata['debug_mode'] = False
real_images_dir = setup_evaluation("real", curriculum['dataset'], opt.output_dir, target_size=metadata['img_size'])
os.makedirs(opt.output_dir, exist_ok=True)
generators = importlib.import_module('generators.'+metadata['generator_module'])
generator_core = getattr(siren, metadata['model']) # network structure for radiance field generation
# generator = generators.ImplicitGenerator3d [generation_MPI_learn_hd file]
generator = getattr(generators, metadata['generator'])(generator_core, metadata['latent_dim'],**metadata).to(device)
print(opt.generator_file)
generator.load_state_dict(torch.load(opt.generator_file, map_location=device))
print("loaded generator")
# generator = torch.load(opt.generator_file, map_location=device)
generator.set_device(device)
generator.eval()
ema_file = opt.generator_file.split('generator')[0] + 'ema.pth'
print(ema_file)
ema = ExponentialMovingAverage(generator.parameters(), decay=0.999)
ema.load_state_dict(torch.load(ema_file, map_location=device))
ema.copy_to(generator.parameters())
generator.set_device(device)
generator.eval()
dif_net = importlib.import_module('siren.siren')
dif_model = getattr(dif_net, 'SPATIAL_SIREN_DEFORM')(input_dim=7, z_dim=64+80, output_dim=7)
dif_model.load_state_dict(torch.load(opt.deform_file, map_location=device))
print("loaded dif model")
# print(dif_model)
dif_model.eval()
dif_model = dif_model.to(device)
dif_model = dif_model.to(device)#.set_device(device)
vae_net_id = importlib.import_module('VAE_model')
vae_net_id = getattr(vae_net_id, 'VAE_ID')(80, 256)
vae_net_id.load_state_dict(torch.load("./pretrained_vaes/identity/vae.pth", map_location='cpu'))
print("load vae id")
vae_net_id = vae_net_id.to(device)
vae_net_id.eval()
vae_net_exp = importlib.import_module('VAE_model')
vae_net_exp = getattr(vae_net_exp, 'VAE_EXP')(64, 256)
vae_net_exp.load_state_dict(torch.load("./pretrained_vaes/expression/vae.pth", map_location='cpu'))
print("load vae exp")
vae_net_exp = vae_net_exp.to(device)
vae_net_exp.eval()
for img_counter in tqdm(range(opt.num_images)):
torch.manual_seed(img_counter)
with torch.no_grad():
# For FID calculation, sample identity code, expression code and camera pose each iteration
z_id, z_exp = sample_latents(1, device, vae_net_id, vae_net_exp, metadata)
z_noise = z_sampler((1, 80), device=device, dist='gaussian')
img = staged_forward(z_exp, z_id, z_noise, generator, dif_model, vae_net_id, vae_net_exp, stage=128, alpha=1, metadata=metadata, opt=opt)[0]
save_image(img, os.path.join(opt.output_dir, f'{img_counter:0>5}.png'), normalize=True, range=(-1, 1))
metrics_dict = torch_fidelity.calculate_metrics(input1=opt.output_dir, input2=real_images_dir, cuda=True, isc=True, fid=True, kid=True, ppl=False, verbose=True)
print(metrics_dict)