-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathparse_sort.py
188 lines (163 loc) · 7.79 KB
/
parse_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
This file extracts information about the runtimes of each stage of
sort jobs (and about the total runtime) to facilitate plotting
results.
"""
import os
import sys
import parse_event_logs
import utils
def filter(all_jobs_dict):
sorted_jobs = sorted(all_jobs_dict.iteritems())
# Find the second job that has a shuffle, so we skip the first sort job (which we
# consider warmup).
second_shuffle_index = utils.find_index_of_shuffles(sorted_jobs)[1]
print "Second job with a shuffle is at index {} and has {} stages".format(
second_shuffle_index, len(sorted_jobs[second_shuffle_index][1].stages))
# Use every other job, since there's a garbage collection job in between each
# sort job.
filtered_jobs = sorted_jobs[second_shuffle_index::2]
return {k:v for (k,v) in filtered_jobs}
def main(argv):
if len(argv) < 2:
print ("Usage: parse_sort.py output_directory [opt (to copy data): driver_hostname " +
"identity_file num_experiments [opt username]]")
sys.exit(1)
output_prefix = argv[1]
if (not os.path.exists(output_prefix)):
os.mkdir(output_prefix)
num_cores = 8
network_throughput_gbps = 0.6
if len(argv) >= 5:
driver_hostname = argv[2]
if "millennium" in driver_hostname:
# The millennium machines have 16 cores.
# TODO: Temporarily, only running 8, to understand CPU effects of opportunistic networking.
num_cores = 8
identity_file = argv[3]
num_experiments = argv[4]
if len(argv) >= 6:
username = argv[5]
else:
username = "root"
utils.copy_latest_zipped_logs(driver_hostname, identity_file, output_prefix, num_experiments,
username)
# Find all of the directories with experiment data.
all_dirnames = [d for d in os.listdir(output_prefix)
if os.path.isdir(os.path.join(output_prefix, d))]
all_dirnames.sort(key = lambda d: -int(d.split("_")[4]))
map_data_file = open(os.path.join(output_prefix, "map_times"), "w")
reduce_data_file = open(os.path.join(output_prefix, "reduce_times"), "w")
total_data_file = open(os.path.join(output_prefix, "total_times"), "w")
for dirname in all_dirnames:
utils.plot_continuous_monitors(os.path.join(output_prefix, dirname))
local_event_log_filename = os.path.join(output_prefix, dirname, "event_log")
print "Parsing event log in %s" % local_event_log_filename
analyzer = parse_event_logs.Analyzer(local_event_log_filename, job_filterer = filter)
analyzer.output_job_resource_metrics(local_event_log_filename)
analyzer.output_stage_resource_metrics(local_event_log_filename)
analyzer.output_ideal_time_metrics(local_event_log_filename)
analyzer.output_ideal_time_metrics(local_event_log_filename, fix_executors = True)
analyzer.output_compute_monotask_time_cdfs(local_event_log_filename)
total_runtimes = []
total_ideal_runtimes = []
total_ideal_runtimes_fix_executors = []
total_ideal_runtimes_fluid_resources = []
map_runtimes = []
map_ideal_runtimes_fix_executors = []
map_ideal_runtimes_fluid_resources = []
reduce_runtimes = []
reduce_ideal_runtimes_fix_executors = []
reduce_ideal_runtimes_fluid_resources = []
reduce_cpu_ideal_times = []
for (job_id, job) in analyzer.jobs.iteritems():
print "******** Job %s ********" % job_id
job_millis = 0
job_ideal_millis = 0
job_ideal_millis_fix_executors = 0
# Counters for the job-wide CPU, network, and disk time.
# These are used to compute an ideal that assumes that different
# resources can be fluidly moved to different stages in the job (which
# may not always be possible).
job_cpu_millis = 0
job_network_millis = 0
job_disk_millis = 0
for (stage_id, stage) in job.stages.iteritems():
print " *** Stage %s ***" % stage_id
stage_ideal_times = stage.get_ideal_times_from_metrics(
network_throughput_gbps,
num_cores_per_executor = num_cores)
print " Ideal times (CPU, net, disk):", stage_ideal_times
stage_ideal_millis = 1000 * max(stage_ideal_times)
stage_runtime = stage.runtime()
stage_ideal_times_fix_executors = stage.get_ideal_times_from_metrics_fix_executors(
network_throughput_gigabits_per_executor = network_throughput_gbps,
num_cores_per_executor = num_cores)
print " Ideal times w/ fixed execs (CPU, net, disk):", stage_ideal_times_fix_executors
stage_ideal_millis_fix_executors = 1000 * max(stage_ideal_times_fix_executors)
job_millis += stage_runtime
job_ideal_millis += stage_ideal_millis
job_ideal_millis_fix_executors += stage_ideal_millis_fix_executors
job_cpu_millis += stage_ideal_times[0]
job_network_millis += stage_ideal_times[1]
job_disk_millis += stage_ideal_times[2]
if stage.has_shuffle_read():
reduce_runtimes.append(stage_runtime)
reduce_ideal_runtimes_fix_executors.append(stage_ideal_millis_fix_executors)
reduce_ideal_runtimes_fluid_resources.append(stage_ideal_millis)
reduce_cpu_ideal_times.append(1000 * stage_ideal_times[0])
else:
map_runtimes.append(stage_runtime)
map_ideal_runtimes_fix_executors.append(stage_ideal_millis_fix_executors)
map_ideal_runtimes_fluid_resources.append(stage_ideal_millis)
total_runtimes.append(job_millis)
total_ideal_runtimes.append(job_ideal_millis)
total_ideal_runtimes_fix_executors.append(job_ideal_millis_fix_executors)
print " SUMMARY: Job CPU: {}, network: {}, disk: {}".format(
job_cpu_millis, job_network_millis, job_disk_millis)
total_ideal_runtimes_fluid_resources.append(
1000 * max(job_cpu_millis, job_network_millis, job_disk_millis))
output_filename = local_event_log_filename + "_job_runtimes"
with open(output_filename, "w") as output_file:
output_file.write("Name Actual (min, med, max) Ideal (min, med, max)\n")
map_data = "{} {}".format(
utils.get_min_med_max_string(map_runtimes),
utils.get_min_med_max_string(map_ideal_runtimes_fluid_resources))
reduce_data = "{} {}".format(
utils.get_min_med_max_string(reduce_runtimes),
utils.get_min_med_max_string(reduce_ideal_runtimes_fluid_resources))
total_data = "{} {}".format(
utils.get_min_med_max_string(total_runtimes),
utils.get_min_med_max_string(total_ideal_runtimes))
output_file.write("Map {}\n".format(map_data))
output_file.write("Reduce {}\n".format(reduce_data))
output_file.write("Total {}\n".format(total_data))
job_params = dirname.split("_")
num_shuffle_values = int(job_params[5])
num_tasks = int(job_params[2])
map_data_file.write("{} {} {} {}\n".format(
num_shuffle_values,
num_tasks,
map_data,
utils.get_min_med_max_string(map_ideal_runtimes_fix_executors)))
reduce_data_file.write("{} {} {} {} {}\n".format(
num_shuffle_values,
num_tasks,
reduce_data,
utils.get_min_med_max_string(reduce_ideal_runtimes_fix_executors),
utils.get_min_med_max_string(reduce_cpu_ideal_times)))
total_data_file.write("{} {} {} {} {}\n".format(
num_shuffle_values,
num_tasks,
total_data,
utils.get_min_med_max_string(total_ideal_runtimes_fix_executors),
utils.get_min_med_max_string(total_ideal_runtimes_fluid_resources)))
# Generate a gnuplot file to plot the total times and ideal times.
plot_basename = os.path.join(output_prefix, "total_times")
plot_file = utils.create_gnuplot_file_from_base(
"gnuplot_files/plot_totals_and_ideals_base.gp",
plot_basename + ".gp",
{"__OUTPUT_FILEPATH__": plot_basename + ".pdf", "__TOTAL_TIMES_FILEPATH__": plot_basename})
plot_file.close()
if __name__ == "__main__":
main(sys.argv)