-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathstage.py
336 lines (284 loc) · 15.8 KB
/
stage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import logging
import metrics
from task import Task
class Stage:
def __init__(self):
self.start_time = -1
self.tasks = []
def average_task_runtime(self):
return sum([t.runtime() for t in self.tasks]) * 1.0 / len(self.tasks)
def __str__(self):
max_task_runtime = max([t.runtime() for t in self.tasks])
if self.tasks[0].has_fetch:
input_method = "shuffle"
else:
input_method = self.tasks[0].input_read_method
return (("%s tasks (avg runtime: %s, max runtime: %s) Start: %s, runtime: %s, "
"Max concurrency: %s, "
"Input MB: %s (from %s), Output MB: %s, Straggers: %s, Progress rate straggers: %s, "
"Progress rate stragglers explained by scheduler delay (%s), HDFS read (%s), "
"HDFS and read (%s), GC (%s), Network (%s), JIT (%s), output rate stragglers: %s") %
(len(self.tasks), self.average_task_runtime(), max_task_runtime, self.start_time,
self.finish_time() - self.start_time, concurrency.get_max_concurrency(self.tasks),
self.input_mb(), input_method, self.output_mb(),
self.traditional_stragglers(), self.progress_rate_stragglers()[0],
self.scheduler_delay_stragglers()[0], self.hdfs_read_stragglers()[0],
self.hdfs_read_and_scheduler_delay_stragglers()[0], self.gc_stragglers()[0],
# Do not compute the JIT stragglers here! Screws up the calculation.
self.network_stragglers()[0], -1,
self.output_progress_rate_stragglers()[0]))
def verbose_str(self):
# Get info about the longest task.
max_index = -1
max_runtime = -1
for i, task in enumerate(self.tasks):
if task.runtime() > max_runtime:
max_runtime = task.runtime()
max_index = i
return "%s\n Longest Task: %s" % (self, self.tasks[i])
def get_executor_id_to_resource_metrics(self):
"""Compiles a description of this stage's resource usage on each executor.
Returns a mapping from executor id to an ExecutorResourceMetrics object containing the
executor's CPU, network, and GC resource usage while this stage was running.
"""
return {executor: metrics.ExecutorResourceMetrics.get_resource_metrics_for_executor_tasks(tasks)
for executor, tasks in self.get_executor_id_to_tasks().iteritems()}
def get_executor_id_to_tasks(self):
"""
Returns a mapping from executor id to a list of all the tasks from this stage that ran on that
executor.
"""
executor_id_to_tasks = {}
for task in self.tasks:
if task.executor_id not in executor_id_to_tasks:
executor_id_to_tasks[task.executor_id] = []
executor_id_to_tasks[task.executor_id].append(task)
return executor_id_to_tasks
def load_balancing_badness(self):
executor_id_to_tasks = self.get_executor_id_to_tasks()
total_time = 0
for executor_id, tasks in executor_id_to_tasks.iteritems():
min_start_time = min([t.start_time for t in tasks])
max_finish_time = max([t.finish_time for t in tasks])
total_time += max_finish_time - min_start_time
ideal_time = total_time / len(executor_id_to_tasks)
return float(self.runtime()) / ideal_time
def runtime(self):
return self.finish_time() - self.start_time
def has_shuffle_read(self):
total_shuffle_read_bytes = sum(
[t.remote_mb_read + t.local_mb_read for t in self.tasks if t.has_fetch])
return total_shuffle_read_bytes > 0
def finish_time(self):
return max([t.finish_time for t in self.tasks])
def total_runtime(self):
return sum([t.finish_time - t.start_time for t in self.tasks])
def input_mb(self):
""" Returns the total input size for this stage.
This is only valid if the stage read data from a shuffle.
"""
total_input_bytes = sum([t.remote_mb_read + t.local_mb_read for t in self.tasks if t.has_fetch])
total_input_bytes += sum([t.input_mb for t in self.tasks])
return total_input_bytes
def output_mb(self):
""" Returns the total output size for this stage.
This is only valid if the output data was written for a shuffle.
TODO: Add HDFS / in-memory RDD output size.
"""
total_output_size = sum([t.shuffle_mb_written for t in self.tasks])
return total_output_size
def get_network_mb(self):
return sum([t.remote_mb_read for t in self.tasks if t.has_fetch])
def add_event(self, data):
task = Task(data)
if self.start_time == -1:
self.start_time = task.start_time
else:
self.start_time = min(self.start_time, task.start_time)
self.tasks.append(task)
def ideal_time_s(self, network_throughput_gigabits_per_executor, num_cores_per_executor):
ideal_times = self.get_ideal_times_from_metrics(
network_throughput_gigabits_per_executor,
num_cores_per_executor)
return max(ideal_times)
def get_ideal_ser_deser_time_s(self, num_cores_per_executor = 8):
num_executors = len(self.get_executor_id_to_tasks())
total_ser_time_millis = sum([t.hdfs_ser_comp_millis for t in self.tasks])
total_deser_time_millis = sum([t.hdfs_deser_decomp_millis for t in self.tasks])
return (float(total_ser_time_millis + total_deser_time_millis) /
(num_executors * num_cores_per_executor * 1000))
def get_disk_read_time_s(self):
total_disk_bytes_read = 0
disks = set()
executor_id_to_metrics = self.get_executor_id_to_resource_metrics()
for executor_metrics in executor_id_to_metrics.itervalues():
for disk_name, disk_metrics in executor_metrics.disk_name_to_metrics.iteritems():
if disk_name in ["xvdb", "xvdc", "xvdf"]:
total_disk_bytes_read += disk_metrics.bytes_read
disks.add(disk_name)
return (float(total_disk_bytes_read) /
(metrics.AWS_DISK_BYTES_PER_SECOND * len(executor_id_to_metrics) * len(disks)))
def get_ideal_times_from_metrics(
self,
network_throughput_gigabits_per_executor,
num_cores_per_executor = 8,
use_disk_monotask_times = False):
"""Returns a 3-tuple containing the ideal CPU, network, and disk times (s) for this stage.
The ideal times are calculated by assuming that the CPU, network, and disk tasks can be
perfectly scheduled to take advantage of the cluster's available resources.
"""
# First, calculate the total resource usage based on the OS-level counters.
# These will be used to sanity check the job's metrics.
total_cpu_millis = 0
total_network_bytes_transmitted = 0
total_disk_bytes_read_written = 0
total_disk_throughput_Bps = 0
executor_id_to_metrics = self.get_executor_id_to_resource_metrics()
disks = set()
for executor_metrics in executor_id_to_metrics.itervalues():
total_cpu_millis += executor_metrics.cpu_metrics.cpu_millis
total_network_bytes_transmitted += executor_metrics.network_metrics.bytes_transmitted
for disk_name, disk_metrics in executor_metrics.disk_name_to_metrics.iteritems():
# We only consider disks that are used as Spark or HDFS data directories.
if disk_name in ["xvdb", "xvdc", "xvdf"]:
total_disk_bytes_read_written += (disk_metrics.bytes_read + disk_metrics.bytes_written)
total_disk_throughput_Bps += disk_metrics.effective_throughput_Bps()
disks.add(disk_name)
num_executors = len(executor_id_to_metrics)
ideal_cpu_s = self.__get_ideal_cpu_s(
total_cpu_millis_os_counters = total_cpu_millis,
num_executors = num_executors,
num_cores_per_executor = num_cores_per_executor)
total_network_throughput_Bps = ((1024 * 1024 * 1024 / 8) *
len(executor_id_to_metrics) * network_throughput_gigabits_per_executor)
ideal_network_s = self.__get_ideal_network_s(
total_network_bytes_os_counters = total_network_bytes_transmitted,
total_network_throughput_Bps = total_network_throughput_Bps)
if use_disk_monotask_times:
ideal_disk_s = self.__get_ideal_disk_s(num_executors, len(disks))
else:
# TODO: Compute how many bytes the job thinks it read from / wrote to disk, and use the OS
# metrics as a sanity-check. This may require adding some info to the continuous monitor
# about whether the shuffle data was in-memory or on-disk.
if total_disk_throughput_Bps > 0:
# Hardcode: this is roughly the ec2 disk throughput.
ideal_disk_s = float(total_disk_bytes_read_written) /
(metrics.AWS_DISK_BYTES_PER_SECOND * num_executors * len(disks)) #total_disk_throughput_Bps
else:
ideal_disk_s = 0
if total_disk_bytes_read_written > 0:
logging.warning(
"Outputting 0 disk seconds because throughput while writing {} bytes was 0.".format(
total_disk_bytes_read_written))
return (ideal_cpu_s, ideal_network_s, ideal_disk_s)
def get_ideal_times_from_metrics_fix_executors(
self,
network_throughput_gigabits_per_executor,
num_cores_per_executor = 8,
use_disk_monotask_times = False):
"""Returns a 3-tuple containing the ideal CPU, network, and disk time(s) for this stage.
Unlike the above method, this method assumes that the assignment of tasks to worker machines
is fixed (so, for example, the ideal CPU time is the maximum CPU time on any one executor,
rather than the total CPU time across all executors divided by the number of executors).
This method uses the monotask times to determine the ideal compute time, but uses the
executor metrics to compute the ideal network and disk times. This is because we don't
currently have enough disk information to determine the ideal disk time, because each
monotask just has the total disk time, but doesn't break that into local versus remote
time, or into how much time was spent on each local disk.
"""
max_executor_cpu_millis = 0
max_network_seconds = 0
max_disk_seconds = 0
executor_id_to_metrics = self.get_executor_id_to_resource_metrics()
network_throughput_Bps = network_throughput_gigabits_per_executor * 1024 * 1024 * 1024 / 8.0
for executor_id, executor_metrics in executor_id_to_metrics.iteritems():
tasks_for_executor = [t for t in self.tasks if t.executor_id == executor_id]
# For monotasks, always use the monotask time (not the underlying OS counters) to
# compute the ideal time, for consistency with the model described in the paper.
executor_cpu_millis = (sum([t.compute_monotask_millis for t in tasks_for_executor]) /
num_cores_per_executor)
if executor_cpu_millis == 0:
# This is a Spark job, so use the CPU counters.
executor_cpu_millis = (float(executor_metrics.cpu_metrics.cpu_millis) /
num_cores_per_executor)
max_executor_cpu_millis = max(max_executor_cpu_millis, executor_cpu_millis)
# Use the bytes transmitted to calculate the network time. Could alternately use the
# bytes received (this won't include any packets that were dropped).
executor_network_seconds = (
float(executor_metrics.network_metrics.bytes_transmitted) / network_throughput_Bps)
max_network_seconds = max(max_network_seconds, executor_network_seconds)
# For the disks, also assume there's no flexibility in which disk data gets written to.
# TODO: Should be calculating the disk time based on the disk monotasks, not based on the OS
# counters.
disks = set()
for disk_name, disk_metrics in executor_metrics.disk_name_to_metrics.iteritems():
if disk_name in ["xvdb", "xvdc", "xvdf"]:
disks.add(disk_name)
disk_bytes_read_written = disk_metrics.bytes_read + disk_metrics.bytes_written
if not use_disk_monotask_times:
# TODO: Don't use the effective throughput! This can be wrong.
disk_throughput = disk_metrics.effective_throughput_Bps()
if disk_bytes_read_written > 0 and disk_throughput > 0:
disk_seconds = disk_bytes_read_written / disk_throughput
max_disk_seconds = max(max_disk_seconds, disk_seconds)
if use_disk_monotask_times:
# Calcuate the ideal disk time based on the monotask times.
# TODO: Remote reads aren't calculated correctly: when there's a shuffle read, some of the
# task's data was read from remote disks, so it's not correct to count it as for the local
# disk.
total_disk_monotask_millis = sum([t.disk_monotask_millis for t in tasks_for_executor])
disk_seconds = float(total_disk_monotask_millis) / (len(disks) * 1000)
max_disk_seconds = max(max_disk_seconds, disk_seconds)
return (max_executor_cpu_millis / 1000., max_network_seconds, max_disk_seconds)
def __get_ideal_cpu_s(self, total_cpu_millis_os_counters, num_executors, num_cores_per_executor):
# Attempt to use the CPU monotask time to compute the ideal time. If the CPU monotask time
# is 0, that means this was a Spark job, in which case we have no choice but to use the OS
# counters.
total_cpu_monotask_millis = sum([t.compute_monotask_millis for t in self.tasks])
if total_cpu_monotask_millis > 0:
# The compute monotask time should be very close to the time from the OS counters.
self.__check_times_within_error_bound(
base_time = total_cpu_monotask_millis,
second_time = total_cpu_millis_os_counters,
max_relative_difference = 0.1,
error_message = ("Executor counters say {} CPU millis elapsed, but total CPU " +
"monotask time was {}").format(total_cpu_millis_os_counters, total_cpu_monotask_millis))
# Use the monotask time to compute the ideal time.
total_cpu_millis = total_cpu_monotask_millis
else:
total_cpu_millis = total_cpu_millis_os_counters
return float(total_cpu_millis) / (num_executors * num_cores_per_executor * 1000)
def __get_ideal_disk_s(self, num_executors, disks_per_executor):
""" Returns the ideal disk time, based on the disk monotasks times.
This should only be used when the disk concurrency was 1 (otherwise this will overestimate
the disk time significantly).
TODO: Ideally we'd have the disk each monotask ran on, so we could calculate the degree to which
issues were because of load balancing issues across the disks.
"""
total_disk_monotask_millis = sum([t.disk_monotask_millis for t in self.tasks])
return float(total_disk_monotask_millis) / (num_executors * disks_per_executor * 1000)
def __get_ideal_network_s(self, total_network_bytes_os_counters, total_network_throughput_Bps):
job_network_mb = self.get_network_mb()
total_network_mb_transmitted = total_network_bytes_os_counters / (1024 * 1024)
# Use the executor data about the total network data transmitted as a sanity check: this
# should be close to how much data the job thinks it transferred over the network.
# When the shuffle opportunistically starts early, this will be incorrect, because the job
# won't think it sent any bytes over the network.
if (job_network_mb > 0):
self.__check_times_within_error_bound(
base_time = job_network_mb,
second_time = total_network_mb_transmitted,
max_relative_difference = 0.1,
error_message = (("Executor counters say {} bytes transmitted, but job thinks {} " +
"was transmitted").format(total_network_mb_transmitted, job_network_mb)))
# Ultimately return what the network thinks it transmitted. This is required for the
# calculation to work properly with the pipelined shuffle, where during the reduce
# stage, there's a bunch of data transmitted that's not associated with a particular
# task. It also works better in general, because typically there's some overhead, where
# the actual data transmitted is somewhat higher than what the job thought.
return total_network_bytes_os_counters / total_network_throughput_Bps
def __check_times_within_error_bound(self, base_time, second_time, max_relative_difference,
error_message):
if float(abs(second_time - base_time)) / base_time > max_relative_difference:
if base_time > 0 and second_time > 0:
logging.warning(error_message)