-
Notifications
You must be signed in to change notification settings - Fork 283
/
Copy pathconvert.py
253 lines (223 loc) · 9.06 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env python
# coding: utf-8
#
# Author: Kazuto Nakashima
# URL: http://kazuto1011.github.io
# Created: 2017-11-15
from __future__ import absolute_import, division, print_function
import re
import traceback
from collections import Counter, OrderedDict
import click
import numpy as np
import torch
from addict import Dict
from libs import caffe_pb2
from libs.models import DeepLabV1_ResNet101, DeepLabV2_ResNet101_MSC
def parse_caffemodel(model_path):
caffemodel = caffe_pb2.NetParameter()
with open(model_path, "rb") as f:
caffemodel.MergeFromString(f.read())
# Check trainable layers
print(
*Counter(
[(layer.type, len(layer.blobs)) for layer in caffemodel.layer]
).most_common(),
sep="\n",
)
params = OrderedDict()
previous_layer_type = None
for layer in caffemodel.layer:
# Skip the shared branch
if "res075" in layer.name or "res05" in layer.name:
continue
print(
"\033[34m[Caffe]\033[00m",
"{} ({}): {}".format(layer.name, layer.type, len(layer.blobs)),
)
# Convolution or Dilated Convolution
if "Convolution" in layer.type:
params[layer.name] = {}
params[layer.name]["kernel_size"] = layer.convolution_param.kernel_size[0]
params[layer.name]["weight"] = list(layer.blobs[0].data)
if len(layer.blobs) == 2:
params[layer.name]["bias"] = list(layer.blobs[1].data)
if len(layer.convolution_param.stride) == 1: # or []
params[layer.name]["stride"] = layer.convolution_param.stride[0]
else:
params[layer.name]["stride"] = 1
if len(layer.convolution_param.pad) == 1: # or []
params[layer.name]["padding"] = layer.convolution_param.pad[0]
else:
params[layer.name]["padding"] = 0
if isinstance(layer.convolution_param.dilation, int):
params[layer.name]["dilation"] = layer.convolution_param.dilation
elif len(layer.convolution_param.dilation) == 1:
params[layer.name]["dilation"] = layer.convolution_param.dilation[0]
else:
params[layer.name]["dilation"] = 1
# Fully-connected
elif "InnerProduct" in layer.type:
params[layer.name] = {}
params[layer.name]["weight"] = list(layer.blobs[0].data)
if len(layer.blobs) == 2:
params[layer.name]["bias"] = list(layer.blobs[1].data)
# Batch Normalization
elif "BatchNorm" in layer.type:
params[layer.name] = {}
params[layer.name]["running_mean"] = (
np.array(layer.blobs[0].data) / layer.blobs[2].data[0]
)
params[layer.name]["running_var"] = (
np.array(layer.blobs[1].data) / layer.blobs[2].data[0]
)
params[layer.name]["eps"] = layer.batch_norm_param.eps
params[layer.name]["momentum"] = (
1 - layer.batch_norm_param.moving_average_fraction
)
params[layer.name]["num_batches_tracked"] = np.array(0)
batch_norm_layer = layer.name
# Scale
elif "Scale" in layer.type:
assert previous_layer_type == "BatchNorm"
params[batch_norm_layer]["weight"] = list(layer.blobs[0].data)
params[batch_norm_layer]["bias"] = list(layer.blobs[1].data)
elif "Pooling" in layer.type:
params[layer.name] = {}
params[layer.name]["kernel_size"] = layer.pooling_param.kernel_size
params[layer.name]["stride"] = layer.pooling_param.stride
params[layer.name]["padding"] = layer.pooling_param.pad
previous_layer_type = layer.type
return params
# Hard coded translater
def translate_layer_name(source, target="base"):
def layer_block_branch(source, target):
target += "layer{}".format(source[0][0])
if len(source[0][1:]) == 1:
block = {"a": 1, "b": 2, "c": 3}.get(source[0][1:])
else:
block = int(source[0][2:]) + 1
target += ".block{}".format(block)
branch = source[1][6:]
if branch == "1":
target += ".shortcut"
elif branch == "2a":
target += ".reduce"
elif branch == "2b":
target += ".conv3x3"
elif branch == "2c":
target += ".increase"
return target
source = source.split("_")
if "pool" in source[0]:
target += "layer1.pool"
elif "fc" in source[0]:
if len(source) == 3:
stage = source[2]
target += "aspp.{}".format(stage)
else:
target += "fc"
elif "conv1" in source[0]:
target += "layer1.conv1.conv"
elif "conv1" in source[1]:
target += "layer1.conv1.bn"
elif "res" in source[0]:
source[0] = source[0].replace("res", "")
target = layer_block_branch(source, target)
target += ".conv"
elif "bn" in source[0]:
source[0] = source[0].replace("bn", "")
target = layer_block_branch(source, target)
target += ".bn"
return target
@click.command()
@click.option(
"-d",
"--dataset",
type=click.Choice(["voc12", "coco"]),
required=True,
help="Caffemodel",
)
def main(dataset):
"""
Convert caffemodels to pytorch models
"""
WHITELIST = ["kernel_size", "stride", "padding", "dilation", "eps", "momentum"]
CONFIG = Dict(
{
"voc12": {
# For loading the provided VOC 2012 caffemodel
"PATH_CAFFE_MODEL": "data/models/voc12/deeplabv2_resnet101_msc/caffemodel/train2_iter_20000.caffemodel",
"PATH_PYTORCH_MODEL": "data/models/voc12/deeplabv2_resnet101_msc/caffemodel/deeplabv2_resnet101_msc-vocaug.pth",
"N_CLASSES": 21,
"MODEL": "DeepLabV2_ResNet101_MSC",
"HEAD": "base.",
},
"coco": {
# For loading the provided initial weights pre-trained on COCO
"PATH_CAFFE_MODEL": "data/models/coco/deeplabv1_resnet101/caffemodel/init.caffemodel",
"PATH_PYTORCH_MODEL": "data/models/coco/deeplabv1_resnet101/caffemodel/deeplabv1_resnet101-coco.pth",
"N_CLASSES": 91,
"MODEL": "DeepLabV1_ResNet101",
"HEAD": "",
},
}.get(dataset)
)
params = parse_caffemodel(CONFIG.PATH_CAFFE_MODEL)
model = eval(CONFIG.MODEL)(n_classes=CONFIG.N_CLASSES)
model.eval()
reference_state_dict = model.state_dict()
rel_tol = 1e-7
converted_state_dict = OrderedDict()
for caffe_layer, caffe_layer_dict in params.items():
for param_name, caffe_values in caffe_layer_dict.items():
pytorch_layer = translate_layer_name(caffe_layer, CONFIG.HEAD)
if pytorch_layer:
pytorch_param = pytorch_layer + "." + param_name
# Parameter check
if param_name in WHITELIST:
pytorch_values = eval("model." + pytorch_param)
if isinstance(pytorch_values, tuple):
assert (
pytorch_values[0] == caffe_values
), "Inconsistent values: {} @{} (Caffe), {} @{} (PyTorch)".format(
caffe_values,
caffe_layer + "/" + param_name,
pytorch_values,
pytorch_param,
)
else:
assert (
abs(pytorch_values - caffe_values) < rel_tol
), "Inconsistent values: {} @{} (Caffe), {} @{} (PyTorch)".format(
caffe_values,
caffe_layer + "/" + param_name,
pytorch_values,
pytorch_param,
)
print(
"\033[34m[Passed!]\033[00m",
(caffe_layer + "/" + param_name).ljust(35),
"->",
pytorch_param,
)
continue
# Weight conversion
if pytorch_param in reference_state_dict:
caffe_values = torch.tensor(caffe_values)
caffe_values = caffe_values.view_as(
reference_state_dict[pytorch_param]
)
converted_state_dict[pytorch_param] = caffe_values
print(
"\033[32m[Copied!]\033[00m",
(caffe_layer + "/" + param_name).ljust(35),
"->",
pytorch_param,
)
print("\033[32mVerify the converted model\033[00m")
model.load_state_dict(converted_state_dict)
print('Saving to "{}"'.format(CONFIG.PATH_PYTORCH_MODEL))
torch.save(converted_state_dict, CONFIG.PATH_PYTORCH_MODEL)
if __name__ == "__main__":
main()