-
Notifications
You must be signed in to change notification settings - Fork 171
/
Copy pathmain.py
374 lines (297 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#!/usr/bin/env python
# coding: utf-8
#
# Author: Kazuto Nakashima
# URL: http://kazuto1011.github.io
# Created: 2017-05-18
from __future__ import print_function
import copy
import os.path as osp
import click
import cv2
import matplotlib.cm as cm
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import models, transforms
from grad_cam import (
BackPropagation,
Deconvnet,
GradCAM,
GuidedBackPropagation,
occlusion_sensitivity,
)
# if a model includes LSTM, such as in image captioning,
# torch.backends.cudnn.enabled = False
def get_device(cuda):
cuda = cuda and torch.cuda.is_available()
device = torch.device("cuda" if cuda else "cpu")
if cuda:
current_device = torch.cuda.current_device()
print("Device:", torch.cuda.get_device_name(current_device))
else:
print("Device: CPU")
return device
def load_images(image_paths):
images = []
raw_images = []
print("Images:")
for i, image_path in enumerate(image_paths):
print("\t#{}: {}".format(i, image_path))
image, raw_image = preprocess(image_path)
images.append(image)
raw_images.append(raw_image)
return images, raw_images
def get_classtable():
classes = []
with open("samples/synset_words.txt") as lines:
for line in lines:
line = line.strip().split(" ", 1)[1]
line = line.split(", ", 1)[0].replace(" ", "_")
classes.append(line)
return classes
def preprocess(image_path):
raw_image = cv2.imread(image_path)
raw_image = cv2.resize(raw_image, (224,) * 2)
image = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)(raw_image[..., ::-1].copy())
return image, raw_image
def save_gradient(filename, gradient):
gradient = gradient.cpu().numpy().transpose(1, 2, 0)
gradient -= gradient.min()
gradient /= gradient.max()
gradient *= 255.0
cv2.imwrite(filename, np.uint8(gradient))
def save_gradcam(filename, gcam, raw_image, paper_cmap=False):
gcam = gcam.cpu().numpy()
cmap = cm.jet_r(gcam)[..., :3] * 255.0
if paper_cmap:
alpha = gcam[..., None]
gcam = alpha * cmap + (1 - alpha) * raw_image
else:
gcam = (cmap.astype(np.float) + raw_image.astype(np.float)) / 2
cv2.imwrite(filename, np.uint8(gcam))
def save_sensitivity(filename, maps):
maps = maps.cpu().numpy()
scale = max(maps[maps > 0].max(), -maps[maps <= 0].min())
maps = maps / scale * 0.5
maps += 0.5
maps = cm.bwr_r(maps)[..., :3]
maps = np.uint8(maps * 255.0)
maps = cv2.resize(maps, (224, 224), interpolation=cv2.INTER_NEAREST)
cv2.imwrite(filename, maps)
# torchvision models
model_names = sorted(
name
for name in models.__dict__
if name.islower() and not name.startswith("__") and callable(models.__dict__[name])
)
@click.group()
@click.pass_context
def main(ctx):
print("Mode:", ctx.invoked_subcommand)
@main.command()
@click.option("-i", "--image-paths", type=str, multiple=True, required=True)
@click.option("-a", "--arch", type=click.Choice(model_names), required=True)
@click.option("-t", "--target-layer", type=str, required=True)
@click.option("-k", "--topk", type=int, default=3)
@click.option("-o", "--output-dir", type=str, default="./results")
@click.option("--cuda/--cpu", default=True)
def demo1(image_paths, target_layer, arch, topk, output_dir, cuda):
"""
Visualize model responses given multiple images
"""
device = get_device(cuda)
# Synset words
classes = get_classtable()
# Model from torchvision
model = models.__dict__[arch](pretrained=True)
model.to(device)
model.eval()
# Images
images, raw_images = load_images(image_paths)
images = torch.stack(images).to(device)
"""
Common usage:
1. Wrap your model with visualization classes defined in grad_cam.py
2. Run forward() with images
3. Run backward() with a list of specific classes
4. Run generate() to export results
"""
# =========================================================================
print("Vanilla Backpropagation:")
bp = BackPropagation(model=model)
probs, ids = bp.forward(images) # sorted
for i in range(topk):
bp.backward(ids=ids[:, [i]])
gradients = bp.generate()
# Save results as image files
for j in range(len(images)):
print("\t#{}: {} ({:.5f})".format(j, classes[ids[j, i]], probs[j, i]))
save_gradient(
filename=osp.join(
output_dir,
"{}-{}-vanilla-{}.png".format(j, arch, classes[ids[j, i]]),
),
gradient=gradients[j],
)
# Remove all the hook function in the "model"
bp.remove_hook()
# =========================================================================
print("Deconvolution:")
deconv = Deconvnet(model=model)
_ = deconv.forward(images)
for i in range(topk):
deconv.backward(ids=ids[:, [i]])
gradients = deconv.generate()
for j in range(len(images)):
print("\t#{}: {} ({:.5f})".format(j, classes[ids[j, i]], probs[j, i]))
save_gradient(
filename=osp.join(
output_dir,
"{}-{}-deconvnet-{}.png".format(j, arch, classes[ids[j, i]]),
),
gradient=gradients[j],
)
deconv.remove_hook()
# =========================================================================
print("Grad-CAM/Guided Backpropagation/Guided Grad-CAM:")
gcam = GradCAM(model=model)
_ = gcam.forward(images)
gbp = GuidedBackPropagation(model=model)
_ = gbp.forward(images)
for i in range(topk):
# Guided Backpropagation
gbp.backward(ids=ids[:, [i]])
gradients = gbp.generate()
# Grad-CAM
gcam.backward(ids=ids[:, [i]])
regions = gcam.generate(target_layer=target_layer)
for j in range(len(images)):
print("\t#{}: {} ({:.5f})".format(j, classes[ids[j, i]], probs[j, i]))
# Guided Backpropagation
save_gradient(
filename=osp.join(
output_dir,
"{}-{}-guided-{}.png".format(j, arch, classes[ids[j, i]]),
),
gradient=gradients[j],
)
# Grad-CAM
save_gradcam(
filename=osp.join(
output_dir,
"{}-{}-gradcam-{}-{}.png".format(
j, arch, target_layer, classes[ids[j, i]]
),
),
gcam=regions[j, 0],
raw_image=raw_images[j],
)
# Guided Grad-CAM
save_gradient(
filename=osp.join(
output_dir,
"{}-{}-guided_gradcam-{}-{}.png".format(
j, arch, target_layer, classes[ids[j, i]]
),
),
gradient=torch.mul(regions, gradients)[j],
)
@main.command()
@click.option("-i", "--image-paths", type=str, multiple=True, required=True)
@click.option("-o", "--output-dir", type=str, default="./results")
@click.option("--cuda/--cpu", default=True)
def demo2(image_paths, output_dir, cuda):
"""
Generate Grad-CAM at different layers of ResNet-152
"""
device = get_device(cuda)
# Synset words
classes = get_classtable()
# Model
model = models.resnet152(pretrained=True)
model.to(device)
model.eval()
# The four residual layers
target_layers = ["relu", "layer1", "layer2", "layer3", "layer4"]
target_class = 243 # "bull mastif"
# Images
images, raw_images = load_images(image_paths)
images = torch.stack(images).to(device)
gcam = GradCAM(model=model)
probs, ids = gcam.forward(images)
ids_ = torch.LongTensor([[target_class]] * len(images)).to(device)
gcam.backward(ids=ids_)
for target_layer in target_layers:
print("Generating Grad-CAM @{}".format(target_layer))
# Grad-CAM
regions = gcam.generate(target_layer=target_layer)
for j in range(len(images)):
print(
"\t#{}: {} ({:.5f})".format(
j, classes[target_class], float(probs[ids == target_class])
)
)
save_gradcam(
filename=osp.join(
output_dir,
"{}-{}-gradcam-{}-{}.png".format(
j, "resnet152", target_layer, classes[target_class]
),
),
gcam=regions[j, 0],
raw_image=raw_images[j],
)
@main.command()
@click.option("-i", "--image-paths", type=str, multiple=True, required=True)
@click.option("-a", "--arch", type=click.Choice(model_names), required=True)
@click.option("-k", "--topk", type=int, default=3)
@click.option("-s", "--stride", type=int, default=1)
@click.option("-b", "--n-batches", type=int, default=128)
@click.option("-o", "--output-dir", type=str, default="./results")
@click.option("--cuda/--cpu", default=True)
def demo3(image_paths, arch, topk, stride, n_batches, output_dir, cuda):
"""
Generate occlusion sensitivity maps
"""
device = get_device(cuda)
# Synset words
classes = get_classtable()
# Model from torchvision
model = models.__dict__[arch](pretrained=True)
model = torch.nn.DataParallel(model)
model.to(device)
model.eval()
# Images
images, _ = load_images(image_paths)
images = torch.stack(images).to(device)
print("Occlusion Sensitivity:")
patche_sizes = [10, 15, 25, 35, 45, 90]
logits = model(images)
probs = F.softmax(logits, dim=1)
probs, ids = probs.sort(dim=1, descending=True)
for i in range(topk):
for p in patche_sizes:
print("Patch:", p)
sensitivity = occlusion_sensitivity(
model, images, ids[:, [i]], patch=p, stride=stride, n_batches=n_batches
)
# Save results as image files
for j in range(len(images)):
print("\t#{}: {} ({:.5f})".format(j, classes[ids[j, i]], probs[j, i]))
save_sensitivity(
filename=osp.join(
output_dir,
"{}-{}-sensitivity-{}-{}.png".format(
j, arch, p, classes[ids[j, i]]
),
),
maps=sensitivity[j],
)
if __name__ == "__main__":
main()