-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathconvert.py
169 lines (144 loc) · 5.68 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python
# coding: utf-8
#
# Author: Kazuto Nakashima
# URL: http://kazuto1011.github.io
# Created: 2017-11-15
from __future__ import print_function
import re
from collections import OrderedDict
import click
import numpy as np
import torch
import yaml
from addict import Dict
from libs import caffe_pb2
from libs.models import PSPNet
def parse_caffemodel(model_path):
caffemodel = caffe_pb2.NetParameter()
with open(model_path, "rb") as f:
caffemodel.MergeFromString(f.read())
# Check trainable layers
print(set([(layer.type, len(layer.blobs)) for layer in caffemodel.layer]))
params = OrderedDict()
for layer in caffemodel.layer:
print("{} ({}): {}".format(layer.name, layer.type, len(layer.blobs)))
# Convolution or Dilated Convolution
if "Convolution" in layer.type:
params[layer.name] = {}
params[layer.name]["kernel_size"] = layer.convolution_param.kernel_size[0]
params[layer.name]["stride"] = layer.convolution_param.stride[0]
params[layer.name]["weight"] = list(layer.blobs[0].data)
if len(layer.blobs) == 2:
params[layer.name]["bias"] = list(layer.blobs[1].data)
if len(layer.convolution_param.pad) == 1: # or []
params[layer.name]["padding"] = layer.convolution_param.pad[0]
else:
params[layer.name]["padding"] = 0
if isinstance(layer.convolution_param.dilation, int): # or []
params[layer.name]["dilation"] = layer.convolution_param.dilation
else:
params[layer.name]["dilation"] = 1
# Batch Normalization
elif "BN" in layer.type:
params[layer.name] = {}
params[layer.name]["weight"] = list(layer.blobs[0].data)
params[layer.name]["bias"] = list(layer.blobs[1].data)
params[layer.name]["running_mean"] = list(layer.blobs[2].data)
params[layer.name]["running_var"] = list(layer.blobs[3].data)
params[layer.name]["eps"] = layer.bn_param.eps
params[layer.name]["momentum"] = layer.bn_param.momentum
return params
# Hard coded translater
def translate_layer_name(source):
def conv_or_bn(source):
if "bn" in source:
return ".bn"
else:
return ".conv"
source = re.split("[_/]", source)
layer = int(source[0][4]) # Remove "conv"
target = ""
if layer == 1:
target += "fcn.layer{}.conv{}".format(layer, source[1])
target += conv_or_bn(source)
elif layer in range(2, 6):
block = int(source[1])
# Auxirally layer
if layer == 4 and len(source) == 3 and source[2] == "bn":
target += "aux.conv4_aux.bn"
elif layer == 4 and len(source) == 2:
target += "aux.conv4_aux.conv"
# Pyramid pooling modules
elif layer == 5 and block == 3 and "pool" in source[2]:
pyramid = {1: 3, 2: 2, 3: 1, 6: 0}[int(source[2][4])]
target += "ppm.stages.s{}.conv".format(pyramid)
target += conv_or_bn(source)
# Last convolutions
elif layer == 5 and block == 4:
target += "final.conv5_4"
target += conv_or_bn(source)
else:
target += "fcn.layer{}".format(layer)
target += ".block{}".format(block)
if source[2] == "3x3":
target += ".conv3x3"
else:
target += ".{}".format(source[3])
target += conv_or_bn(source)
elif layer == 6:
if len(source) == 1:
target += "final.conv6"
else:
target += "aux.conv6_1"
return target
@click.command()
@click.option("--config", "-c", required=True)
def main(config):
WHITELIST = ["kernel_size", "stride", "padding", "dilation", "eps", "momentum"]
CONFIG = Dict(yaml.load(open(config)))
params = parse_caffemodel(CONFIG.CAFFE_MODEL)
model = PSPNet(
n_classes=CONFIG.N_CLASSES, n_blocks=CONFIG.N_BLOCKS, pyramids=CONFIG.PYRAMIDS
)
model.eval()
own_state = model.state_dict()
report = []
state_dict = OrderedDict()
for layer_name, layer_dict in params.items():
for param_name, values in layer_dict.items():
if param_name in WHITELIST:
attribute = translate_layer_name(layer_name)
attribute = eval("model." + attribute + "." + param_name)
message = " ".join(
[
layer_name.ljust(25),
"->",
param_name,
"pytorch: " + str(attribute),
"caffe: " + str(values),
]
)
print(message, end="")
if isinstance(attribute, tuple):
if attribute[0] != values:
report.append(message)
else:
if abs(attribute - values) > 1e-4:
report.append(message)
print(": Checked!")
continue
param_name = translate_layer_name(layer_name) + "." + param_name
if param_name in own_state:
print(layer_name.ljust(25), "->", param_name, end="")
values = torch.FloatTensor(values)
values = values.view_as(own_state[param_name])
state_dict[param_name] = values
print(": Copied!")
print("Inconsistent parameters (*_3x3 dilation and momentum can be ignored):")
print(*report, sep="\n")
# Check
model.load_state_dict(state_dict)
torch.save(state_dict, CONFIG.PYTORCH_MODEL)
if __name__ == "__main__":
main()