forked from gregversteeg/NPEET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·161 lines (136 loc) · 5.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/bin/env python
# Testing the NPEET estimators
from npeet import entropy_estimators as ee
from math import log, pi
import numpy as np
import numpy.random as nr
import random
from numpy.linalg import det
# Some test cases to see usage and correctness
# Differential entropy estimator
print("For a uniform distribution with width alpha, the differential entropy is log_2 alpha, setting alpha = 2")
print("and using k=1, 2, 3, 4, 5")
print("result:", [ee.entropy([[2 * random.random()] for i in range(1000)], k=j + 1) for j in range(5)])
# CONDITIONAL MUTUAL INFORMATION
Ntry = [10, 25, 50, 100, 200] # , 1000, 2000] #Number of samples to use in estimate
nsamples = 100 # Number of times to est mutual information for CI
samplo = int(0.025 * nsamples) # confidence intervals
samphi = int(0.975 * nsamples)
print('\nGaussian random variables\n')
print('Conditional Mutual Information')
d1 = [1, 1, 0]
d2 = [1, 0, 1]
d3 = [0, 1, 1]
mat = [d1, d2, d3]
tmat = np.transpose(mat)
diag = [[3, 0, 0], [0, 1, 0], [0, 0, 1]]
mean = np.array([0, 0, 0])
cov = np.dot(tmat, np.dot(diag, mat))
print('covariance matrix')
print(cov)
trueent = -0.5 * (3 + log(8. * pi * pi * pi * det(cov)))
trueent += -0.5 * (1 + log(2. * pi * cov[2][2])) # z sub
trueent += 0.5 * (2 + log(4. * pi * pi * det([[cov[0][0], cov[0][2]], [cov[2][0], cov[2][2]]]))) # xz sub
trueent += 0.5 * (2 + log(4. * pi * pi * det([[cov[1][1], cov[1][2]], [cov[2][1], cov[2][2]]]))) # yz sub
print('true CMI(x:y|x)', trueent / log(2))
ent = []
err = []
for NN in Ntry:
tempent = []
for j in range(nsamples):
points = nr.multivariate_normal(mean, cov, NN)
x = [point[:1] for point in points]
y = [point[1:2] for point in points]
z = [point[2:] for point in points]
tempent.append(ee.cmi(x, y, z))
tempent.sort()
tempmean = np.mean(tempent)
ent.append(tempmean)
err.append((tempmean - tempent[samplo], tempent[samphi] - tempmean))
print('samples used', Ntry)
print('estimated CMI', ent)
print('95% conf int. (a, b) means (mean - a, mean + b)is interval\n', err)
# MUTUAL INFORMATION
print('Mutual Information')
trueent = 0.5 * (1 + log(2. * pi * cov[0][0])) # x sub
trueent += 0.5 * (1 + log(2. * pi * cov[1][1])) # y sub
trueent += -0.5 * (2 + log(4. * pi * pi * det([[cov[0][0], cov[0][1]], [cov[1][0], cov[1][1]]]))) # xz sub
print('true MI(x:y)', trueent / log(2))
ent = []
err = []
for NN in Ntry:
tempent = []
for j in range(nsamples):
points = nr.multivariate_normal(mean, cov, NN)
x = [point[:1] for point in points]
y = [point[1:2] for point in points]
tempent.append(ee.mi(x, y))
tempent.sort()
tempmean = np.mean(tempent)
ent.append(tempmean)
err.append((tempmean - tempent[samplo], tempent[samphi] - tempmean))
print('samples used', Ntry)
print('estimated MI', ent)
print('95% conf int.\n', err)
print('\nIF you permute the indices of x, e.g., MI(X:Y) = 0')
# You can use shuffle_test method to just get mean, standard deviation
ent = []
err = []
for NN in Ntry:
tempent = []
for j in range(nsamples):
points = nr.multivariate_normal(mean, cov, NN)
x = [point[:1] for point in points]
y = [point[1:2] for point in points]
random.shuffle(y)
tempent.append(ee.mi(x, y))
tempent.sort()
tempmean = np.mean(tempent)
ent.append(tempmean)
err.append((tempmean - tempent[samplo], tempent[samphi] - tempmean))
print('samples used', Ntry)
print('estimated MI', ent)
print('95% conf int.\n', err)
# DISCRETE ESTIMATORS
print("\n\nTest of the discrete entropy estimators\n")
print("For z = y xor x, w/x, y uniform random binary, we should get H(x)=H(y)=H(z) = 1, H(x:y) etc = 0, H(x:y|z) = 1")
x = [0, 0, 0, 0, 1, 1, 1, 1]
y = [0, 1, 0, 1, 0, 1, 0, 1]
z = [0, 1, 0, 1, 1, 0, 1, 0]
print("H(x), H(y), H(z)", ee.entropyd(x), ee.entropyd(y), ee.entropyd(z))
print("H(x:y), etc", ee.midd(x, y), ee.midd(z, y), ee.midd(x, z))
print("H(x:y|z), etc", ee.cmidd(x, y, z), ee.cmidd(z, y, x), ee.cmidd(x, z, y))
# KL Div estimator
print("\n\nKl divergence estimator (not symmetric, not required to have same num samples in each sample set")
print("should be 0 for same distribution")
sample1 = [[2 * random.random()] for i in range(200)]
sample2 = [[2 * random.random()] for i in range(300)]
print('result:', ee.kldiv(sample1, sample2))
print("should be infinite for totally disjoint distributions (but this estimator has an upper bound like log(dist) between disjoint prob. masses)")
sample2 = [[3 + 2 * random.random()] for i in range(300)]
print('result:', ee.kldiv(sample1, sample2))
def test_discrete(size=1000, y_func=lambda x: x**2):
print("\nTest discrete.")
from collections import defaultdict
information = defaultdict(list)
y_entropy = defaultdict(list)
x_entropy = []
for trial in range(10):
x = np.random.randint(low=0, high=10, size=size)
y_random = np.random.randint(low=53, high=53 + 5, size=size)
y_deterministic = y_func(x)
noise = np.random.randint(low=0, high=10, size=size)
y_noisy = y_deterministic + noise
information['random'].append(ee.midd(x, y_random))
information['deterministic'].append(ee.midd(x, y_deterministic))
information['noisy'].append(ee.midd(x, y_noisy))
x_entropy.append(ee.entropyd(x))
y_entropy['random'].append(ee.entropyd(y_random))
y_entropy['deterministic'].append(ee.entropyd(y_deterministic))
y_entropy['noisy'].append(ee.entropyd(y_noisy))
x_entropy = np.mean(x_entropy)
for experiment_name in information.keys():
max_information = min(x_entropy, np.mean(y_entropy[experiment_name]))
print(f"{experiment_name}: I(X; Y) = {np.mean(information[experiment_name]):.4f} "
f"± {np.std(information[experiment_name]):.4f} (maximum possible {max_information:.4f})")
test_discrete()