Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

detecting of persons not working #17

Open
AndreAhmed opened this issue Feb 1, 2019 · 6 comments
Open

detecting of persons not working #17

AndreAhmed opened this issue Feb 1, 2019 · 6 comments

Comments

@AndreAhmed
Copy link

Hello,
I changed the v to 1 but it doesn't detect persons

@kcg2015
Copy link
Owner

kcg2015 commented Feb 1, 2019

@AndreAhmed , it is possible. SSD-Moblienet Detector can fail to detect objects in some cases. You can considering using other types of detectors.

@kcg2015
Copy link
Owner

kcg2015 commented Feb 1, 2019

@AndreAhmed , also change
idx_vec = [i for i, v in enumerate(cls) if ((v==3) and (scores[i]>0.3))]
to
idx_vec = [i for i, v in enumerate(cls) if ((v==1) and (scores[i]>0.0))]
to see if you can detect any person (basically lower the detection threshold to 0). Hope this would work for you to some degree.

@AndreAhmed
Copy link
Author

@kcg2015 Thanks for your fast reply.

It doesn't work at all with that line of code, and there dozen of bounding box out there.

@AndreAhmed
Copy link
Author

@kcg2015
Copy link
Owner

kcg2015 commented Feb 1, 2019

@AndreAhmed , you probably have to try different TF detectors.

@3073
Copy link

3073 commented Mar 21, 2019

I have tested on this video and it works. i changed nothing except the directory for weight file and video file. look the detector module here.
import numpy as np
import tensorflow as tf
import os
import cv2
from matplotlib import pyplot as plt
cwd = os.path.dirname(os.path.realpath(file))
class Detector(object):
def init(self):
self.car_boxes = []
os.chdir(cwd)
detect_model_name = "/ssd_mobilenet_v1_coco_11_06_2017"
PATH_TO_CKPT = detect_model_name + '/frozen_inference_graph.pb'
self.detection_graph = tf.Graph()
config = tf.ConfigProto()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
self.sess = tf.Session(graph=self.detection_graph, config=config)
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
self.boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
self.scores =self.detection_graph.get_tensor_by_name('detection_scores:0')
self.classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
self.num_detections =self.detection_graph.get_tensor_by_name('num_detections:0')
def box_normal_to_pixel(self, box, dim):
height, width = dim[0], dim[1]
box_pixel = [int(box[0]*height), int(box[1]*width), int(box[2]*height), int(box[3]*width)]
return np.array(box_pixel)
def get_points(self, image, visual=False):
self.car_boxes = []
category_index={1: {'id': 1, 'name': u'person'}}
with self.detection_graph.as_default():
image_expanded = np.expand_dims(image, axis=0)
(boxes, scores, classes, num_detections) = self.sess.run(
[self.boxes, self.scores, self.classes, self.num_detections],
feed_dict={self.image_tensor: image_expanded})
if visual == True:
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,min_score_thresh=.4,
line_thickness=3)
plt.figure(figsize=(9,6))
plt.imshow(image)
plt.show()
boxes=np.squeeze(boxes)
classes =np.squeeze(classes)
scores = np.squeeze(scores)
cls = classes.tolist()
idx_vec = [i for i, v in enumerate(cls) if ((v==1) and (scores[i]>0.45))]
if len(idx_vec) ==0:
print('no detection!')
else:
tmp_car_boxes=[]
for idx in idx_vec:
dim = image.shape[0:2]
box = self.box_normal_to_pixel(boxes[idx], dim)
left, top, right, bottom = box[1], box[0], box[3], box[2]
box= [left, top, right, bottom]
tmp_car_boxes.append(box)
cv2.rectangle(image, (left, top), (right, bottom), (250,20,250), 4)
self.car_boxes = tmp_car_boxes
return self.car_boxes

it works for me like this.....

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants