-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy path115. Distinct Subsequences.cpp
188 lines (156 loc) · 5.63 KB
/
115. Distinct Subsequences.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
//backtracking
//TLE
//52 / 63 test cases passed.
class Solution {
public:
string s, t;
int ans;
void backtrack(int start, string& cur){
if(cur.size() == t.size()){
//here cur == t must hold
++ans;
}else if(cur.size() < t.size() &&
cur.size() + s.size() - start >= t.size()){
//use s[start]
if(s[start] == t[cur.size()]){
cur.push_back(s[start]);
backtrack(start+1, cur);
cur.pop_back();
}
//not use s[start]
backtrack(start+1, cur);
}
}
int numDistinct(string s, string t) {
this->s = s;
this->t = t;
ans = 0;
string cur;
backtrack(0, cur);
return ans;
}
};
//backtracking + memorization
//Runtime: 476 ms, faster than 8.83% of C++ online submissions for Distinct Subsequences.
//Memory Usage: 113.1 MB, less than 5.01% of C++ online submissions for Distinct Subsequences.
struct pair_hash {
template <class T1, class T2>
std::size_t operator () (const std::pair<T1,T2> &p) const {
auto h1 = std::hash<T1>{}(p.first);
auto h2 = std::hash<T2>{}(p.second);
// Mainly for demonstration purposes, i.e. works but is overly simple
// In the real world, use sth. like boost.hash_combine
return h1 ^ h2;
}
};
class Solution {
public:
string s, t;
unordered_map<pair<int, string>, int, pair_hash> memo;
int backtrack(int start, string& cur){
if(memo.find({start, cur}) != memo.end()){
return memo[{start, cur}];
}else if(cur.size() == t.size()){
//here cur == t must hold
return memo[{start, cur}] = 1;
}else if(cur.size() < t.size() &&
cur.size() + s.size() - start >= t.size()){
int ret = 0;
//use s[start]
if(s[start] == t[cur.size()]){
cur.push_back(s[start]);
ret += backtrack(start+1, cur);
cur.pop_back();
}
//not use s[start]
ret += backtrack(start+1, cur);
return memo[{start, cur}] = ret;
}
return 0;
}
int numDistinct(string s, string t) {
this->s = s;
this->t = t;
string cur;
return backtrack(0, cur);
}
};
//top-down DP
//actually we don't need to keep the string "cur", because it must be a prefix of "t", so we can simply use the index "ti"
//Runtime: 16 ms, faster than 47.28% of C++ online submissions for Distinct Subsequences.
//Memory Usage: 11.9 MB, less than 5.01% of C++ online submissions for Distinct Subsequences.
class Solution {
public:
string s, t;
vector<vector<int>> dp;
int backtrack(int si, int ti){
if(dp[si][ti] != -1){
return dp[si][ti];
}else if(ti == t.size()){
return dp[si][ti] = 1;
}else if(ti < t.size() &&
ti + s.size() - si >= t.size()){
int ret = 0;
//use s[si]
if(s[si] == t[ti]){
//ti+1: because t[ti] is matched
ret += backtrack(si+1, ti+1);
}
//not use s[si]
ret += backtrack(si+1, ti);
return dp[si][ti] = ret;
}
return dp[si][ti] = 0;
}
int numDistinct(string s, string t) {
this->s = s;
this->t = t;
dp = vector<vector<int>>(s.size()+1, vector<int>(t.size()+1, -1));
return backtrack(0, 0);
}
};
//bottom-up DP
//https://leetcode.com/problems/distinct-subsequences/discuss/37327/Easy-to-understand-DP-in-Java
//https://leetcode.com/problems/distinct-subsequences/discuss/37327/Easy-to-understand-DP-in-Java/35364
//Runtime: 12 ms, faster than 66.64% of C++ online submissions for Distinct Subsequences.
//Memory Usage: 12.5 MB, less than 5.01% of C++ online submissions for Distinct Subsequences.
class Solution {
public:
int numDistinct(string s, string t) {
int ssz = s.size(), tsz = t.size();
//need to use long long?!
vector<vector<long long>> dp(tsz+1, vector<long long>(ssz+1, 0));
//first row: empty t
//dp[0][...] = 1
for(int j = 0; j <= ssz; ++j){
dp[0][j] = 1;
}
//first col: non-empty t, empty s
//dp[1:][0] = 0
for(int i = 1; i <= tsz; ++i){
//compare t[...i-1] with s's substrings
//think t[...i-1] as fixed and keep lengthen s
for(int j = 1; j <= ssz; ++j){
//i, j: length of compared substrings
if(s[j-1] == t[i-1]){ //note: it's NOT s[j] == t[i] here!!
/*
when we don't match s[j-1] and t[i-1],
we have the same way as matching s[0...j-2] and t[i-1],
which is dp[i][j-1]
when we match s[j-1] and t[i-1],
we have the same way as matching s[0...j-2] and t[0...i-2],
which is dp[i-1][j-1]
*/
dp[i][j] = dp[i][j-1] + dp[i-1][j-1];
}else{
/*
if s[j-1] != t[i-1], that means s[j-1] has no effect,
so the result is same as that when s[j-1] doesn't exist
*/
dp[i][j] = dp[i][j-1];
}
}
}
return dp[tsz][ssz];
}
};