-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrcf
executable file
·932 lines (886 loc) · 40.5 KB
/
rcf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
#!/usr/bin/env python3
#
# Copyright (C) 2017–2024, Jose Manuel Martí Martínez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""
Analyze metagenomic (taxonomic) classification data.
"""
# pylint: disable=no-name-in-module, not-an-iterable
import argparse
import bz2
import collections as col
import multiprocessing as mp
import os
import pickle
import platform
import sys
import time
from typing import Counter, List, Dict, Set, Callable, Tuple
from recentrifuge import __version__, __author__, __date__
from recentrifuge.centrifuge import select_centrifuge_inputs
from recentrifuge.clark import select_clark_inputs
from recentrifuge.config import Filename, Sample, Id, Score, Scoring, Extra
from recentrifuge.config import Summary
from recentrifuge.config import HTML_SUFFIX, PKL_SUFFIX, TAXDUMP_PATH
from recentrifuge.config import STATS_SHEET_NAME, LICENSE, Err, Classifier
from recentrifuge.config import NODES_FILE, NAMES_FILE, PLASMID_FILE
from recentrifuge.config import STR_CONTROL, STR_EXCLUSIVE, STR_SHARED
from recentrifuge.config import STR_CONTROL_SHARED
from recentrifuge.config import gray, red, green, yellow, blue, magenta
from recentrifuge.core import process_rank, summarize_analysis
from recentrifuge.generic import GenericFormat, select_generic_inputs
from recentrifuge.kraken import select_kraken_inputs
from recentrifuge.krona import COUNT, UNASSIGNED, SCORE
from recentrifuge.krona import KronaTree
from recentrifuge.lmat import select_lmat_inputs
from recentrifuge.rank import Rank, TaxLevels
from recentrifuge.stats import SampleStats
from recentrifuge.taxclass import process_output
from recentrifuge.taxonomy import Taxonomy
from recentrifuge.trees import TaxTree, MultiTree, SampleDataById
# Test for recommended but optional packages
_USE_PANDAS = True # optional package pandas (to generate extra output)
_USE_OPENPYXL = True # optional package openpyxl (for pandas to save excel)
try:
import pandas as pd
except ImportError:
pd = None
_USE_PANDAS = False
print(yellow('WARNING!'), 'Pandas package not available. '
'Some options may be ignored.')
else:
try:
import openpyxl
except ImportError:
_USE_OPENPYXL = False
def _debug_dummy_plot(taxonomy: Taxonomy,
htmlfile: Filename,
scoring: Scoring = Scoring.SHEL,
):
"""
Generate dummy Krona plot via Krona 2.0 XML spec and exit
"""
print(gray(f'Generating dummy Krona plot {htmlfile}...'), end='')
sys.stdout.flush()
samples: List[Sample] = [Sample('SINGLE'), ]
krona: KronaTree = KronaTree(samples,
min_score=Score(35),
max_score=Score(100),
scoring=scoring,
)
polytree: MultiTree = MultiTree(samples=samples)
polytree.grow(ontology=taxonomy)
polytree.toxml(ontology=taxonomy, krona=krona)
krona.tohtml(htmlfile, pretty=True)
print(green('OK!'))
def main():
"""Main entry point to Recentrifuge."""
def vprint(*arguments) -> None:
"""Print only if verbose/debug mode is enabled"""
if args.debug:
print(*arguments)
def configure_parser():
"""Argument Parser Configuration"""
parser = argparse.ArgumentParser(
description=('Robust comparative analysis and contamination '
'removal for metagenomics'),
epilog=f'%(prog)s - Release {__version__} - {__date__}' + LICENSE,
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument(
'-V', '--version',
action='version',
version=f'%(prog)s version {__version__} released in {__date__}'
)
parser_in = parser.add_argument_group(
'input', 'Define Recentrifuge input files and formats')
parser_in.add_argument(
'-n', '--nodespath',
action='store',
metavar='PATH',
default=TAXDUMP_PATH,
help=('path for the nodes information files '
'(nodes.dmp and names.dmp from NCBI)')
)
parser_in.add_argument(
'--format',
action='store',
metavar='GENERIC_FORMAT',
type=str,
default=None,
help=('format of the output files from a generic classifier '
'included with the option -g; It is a string like '
'"TYP:csv,TID:1,LEN:3,SCO:6,UNC:0" where valid file TYPes '
'are csv/tsv/ssv, and the rest of fields indicate the number'
' of column used (starting in 1) for the TaxIDs assigned, '
'the LENgth of the read, the SCOre given to the assignment, '
'and the taxid code used for UNClassified reads')
)
parser_filein = parser_in.add_mutually_exclusive_group(required=True)
parser_filein.add_argument(
'-f', '--file',
action='append',
metavar='FILE',
type=Filename,
help=('Centrifuge output files; if a single directory is entered, '
'every .out file inside will be taken as a different sample;'
' multiple -f is available to include several Centrifuge '
'samples')
)
parser_filein.add_argument(
'-g', '--generic',
action='append',
metavar='FILE',
type=Filename,
help=('output file from a generic classifier; it requires the flag'
' --format (see such option for details); if a single '
'directory is entered, every file inside will be taken as a '
'different sample; multiple -g is available to include '
'several generic samples by filename')
)
parser_filein.add_argument(
'-l', '--lmat',
action='append',
metavar='FILE',
type=Filename,
default=None,
help=('LMAT output dir or file prefix; if just "." is entered, '
'every subdirectory under the current directory will be '
'taken as a sample and scanned looking for LMAT output files'
'; multiple -l is available to include several samples')
)
parser_filein.add_argument(
'-r', '--clark',
action='append',
metavar='FILE',
type=Filename,
help=('CLARK full-mode output files; if a single directory is '
'entered, every .csv file inside will be taken as a '
'different sample; multiple -r is available to include '
'several CLARK, CLARK-l, and CLARK-S full-mode samples')
)
parser_filein.add_argument(
'-k', '--kraken',
action='append',
metavar='FILE',
type=Filename,
help=('Kraken output files; if a single directory is entered, '
'every .krk file inside will be taken as a different sample;'
' multiple -k is available to include several Kraken '
'(version 1 or 2) samples by filename')
)
parser_out = parser.add_argument_group(
'output', 'Related to the Recentrifuge output files')
parser_out.add_argument(
'-o', '--outprefix',
action='store',
metavar='FILE',
type=Filename,
help='output prefix; if not given, it will be inferred '
'from input files; an HTML filename is still accepted '
'for backwards compatibility with legacy --outhtml option'
)
parser_out.add_argument(
'-e', '--extra',
action='store',
metavar='OUTPUT_TYPE',
choices=[str(xtra) for xtra in Extra],
default=str(Extra(0)),
help=(f'type of extra output to be generated, and can be one of '
f'{[str(xtra) for xtra in Extra]}')
)
parser_out.add_argument(
'-p', '--pickle',
action='count',
default=0,
help=('pickle (serialize) statistics and data results in pandas '
'DataFrames (format affected by selection of --extra); one'
' additional flag and the input samples will be serialized'
' as a dict of sample names and TaxTree objects')
)
parser_out.add_argument(
'--nohtml',
action='store_true',
help='suppress saving the HTML output file'
)
parser_coarse = parser.add_argument_group(
'tuning',
'Coarse tuning of algorithm parameters')
parser_cross = parser_coarse.add_mutually_exclusive_group(
required=False)
parser_cross.add_argument(
'-a', '--avoidcross',
action='store_true',
help='avoid cross analysis'
)
parser_cross.add_argument(
'-c', '--controls',
action='store',
metavar='CONTROLS_NUMBER',
type=int,
default=0,
help=('this number of first samples will be treated as negative '
'controls; default is no controls')
)
parser_coarse.add_argument(
'-s', '--scoring',
action='store',
metavar='SCORING',
choices=[str(each_score) for each_score in Scoring],
default=str(Scoring(0)),
help=(f'type of scoring to be applied, and can be one of '
f'{[str(scr) for scr in Scoring]}')
)
parser_coarse.add_argument(
'-y', '--minscore',
action='store',
metavar='NUMBER',
type=lambda txt: Score(float(txt)),
default=None,
help=('minimum score/confidence of the classification of a read '
'to pass the quality filter; all pass by default')
)
parser_coarse.add_argument(
'-m', '--mintaxa',
action='store',
metavar='INT',
type=int,
default=None,
help=('minimum taxa to avoid collapsing one level into the parent'
' (if not specified a value will be automatically assigned)')
)
parser_coarse.add_argument(
'-x', '--exclude',
action='append',
metavar='TAXID',
type=Id,
default=[],
help=('NCBI taxid code to exclude a taxon and all underneath '
'(multiple -x is available to exclude several taxid)')
)
parser_coarse.add_argument(
'-i', '--include',
action='append',
metavar='TAXID',
type=Id,
default=[],
help=('NCBI taxid code to include a taxon and all underneath '
'(multiple -i is available to include several taxid); '
'by default, all the taxa are considered for inclusion')
)
parser_fine = parser.add_argument_group(
'fine tuning',
'Fine tuning of algorithm parameters')
parser_fine.add_argument(
'-z', '--ctrlminscore',
action='store',
metavar='NUMBER',
type=lambda txt: Score(float(txt)),
default=None,
help=('minimum score/confidence of the classification of a read '
'in control samples to pass the quality filter; it defaults '
'to "minscore"')
)
parser_fine.add_argument(
'-w', '--ctrlmintaxa',
action='store',
metavar='INT',
type=int,
default=None,
help=('minimum taxa to avoid collapsing one level into the parent'
' (if not specified a value will be automatically assigned)')
)
parser_fine.add_argument(
'-u', '--summary',
action='store',
metavar='SUMMARY_BEHAVIOR',
choices=[str(summ) for summ in Summary],
default=str(Summary(0)),
help=(f'choice for summary behaviour, and can be one of '
f'{[str(summ) for summ in Summary]}')
)
parser_fine.add_argument(
'-t', '--takeoutroot',
action='store_true',
help='remove counts directly assigned to the "root" level'
)
parser_fine.add_argument(
'--nokollapse',
action='store_true',
help='show the "cellular organisms" taxon'
)
parser_mode = parser.add_argument_group('advanced',
'Advanced modes of running')
parser_mode.add_argument(
'--dummy', # hidden flag: just generate a dummy plot for JS debug
action='store_true',
help=argparse.SUPPRESS
)
parser_mode.add_argument(
'-d', '--debug',
action='store_true',
help='increase output verbosity and perform additional checks'
)
parser_mode.add_argument(
'--strain',
action='store_true',
help=('set strain level instead of species as the resolution limit'
' for the robust contamination removal algorithm; use with'
' caution, this is an experimental feature')
)
parser_mode.add_argument(
'--sequential',
action='store_true',
help='deactivate parallel processing'
)
return parser
def parse_generic() -> GenericFormat:
"""Check and parse generic format"""
if args.format is None:
print(red('ERROR!'), gray(
'Format specifier (--format) is mandatory with output from a '
'generic classifier.\n\tPlease run with --help for details.'))
exit(2)
return GenericFormat(args.format)
def check_advanced_modes():
"""Check advanced modes of running"""
nonlocal target_ranks # type: ignore # mypy issue #7057
# Check for debugging mode
if args.debug:
print(blue('INFO:'), gray('Debugging mode activated'))
print(blue('INFO:'), gray('Active parameters:'))
for key, val in vars(args).items():
if val is not None and val is not False and val != []:
print(gray(f'\t{key} ='), f'{val}')
if genfmt is not None:
print(blue('INFO:'), gray(genfmt))
# Check for sequential mode
if args.sequential:
print(blue('INFO:'), gray('Parallel mode deactivated'))
# Check for strain experimental mode
if args.strain:
print(yellow('CAUTION!'), '--strain experimental mode activated!')
target_ranks = Rank.selected_ranks_ext
def select_inputs():
"""Choose right classifier, scoring, input and output files"""
nonlocal process, scoring, input_files # type: ignore # mypy #7057
nonlocal plasmidfile, classifier # type: ignore # mypy issue #7057
if generics:
classifier = Classifier.GENERIC
process = process_output
if scoring not in [Scoring.GENERIC, Scoring.LENGTH,
Scoring.LOGLENGTH, Scoring.NORMA]:
print(yellow('WARNING!'), 'Scoring scheme not supported for '
'generic classifier; using GENERIC.')
scoring = Scoring.GENERIC
input_files = generics
if len(generics) == 1 and os.path.isdir(generics[0]):
select_generic_inputs(generics)
elif krakens:
classifier = Classifier.KRAKEN
process = process_output
if scoring not in [Scoring.SHEL, Scoring.LENGTH, Scoring.LOGLENGTH,
Scoring.NORMA, Scoring.KRAKEN]:
print(yellow('WARNING!'), 'Scoring scheme not supported for '
'Kraken classifier; using KRAKEN.')
scoring = Scoring.KRAKEN
input_files = krakens
if len(krakens) == 1 and os.path.isdir(krakens[0]):
select_kraken_inputs(krakens)
elif clarks:
classifier = Classifier.CLARK
process = process_output
if scoring in [Scoring.LMAT, Scoring.KRAKEN]:
print(yellow('WARNING!'), 'Scoring scheme not supported for '
'CLARK classifier; using SHEL.')
scoring = Scoring.SHEL
input_files = clarks
if len(clarks) == 1 and os.path.isdir(clarks[0]):
select_clark_inputs(clarks)
elif lmats:
classifier = Classifier.LMAT
process = process_output
if scoring is not Scoring.LMAT:
print(yellow('WARNING!'), 'Scoring scheme not supported for '
'LMAT classifier; using LMAT.')
scoring = Scoring.LMAT
input_files = lmats
plasmidfile = Filename(os.path.join(args.nodespath, PLASMID_FILE))
select_lmat_inputs(lmats)
elif outputs:
classifier = Classifier.CENTRIFUGE
process = process_output
if scoring not in [Scoring.SHEL, Scoring.LENGTH, Scoring.LOGLENGTH,
Scoring.NORMA]:
print(yellow('WARNING!'), 'Scoring scheme not supported for '
'Centrifuge classifier; using SHEL.')
scoring = Scoring.SHEL
input_files = outputs
if len(outputs) == 1 and os.path.isdir(outputs[0]):
select_centrifuge_inputs(outputs)
else:
raise Exception(red('\nERROR!'), 'Unknown classifier!')
def check_controls():
"""Check and info about the control samples"""
if args.controls:
if args.controls > len(input_files):
print(red(' ERROR!'), gray('More controls than samples'))
exit(1)
print(gray('Control(s) sample(s) for subtractions:'))
for i in range(args.controls):
print(blue(f'\t{input_files[i]}'))
def infer_rcf_outputs():
"""Infer output prefix and HTML filename from inputs"""
nonlocal out_prefix, htmlfile # type: ignore # mypy #7057
if lmats: # Select case for dir name or filename prefix
if os.path.isdir(lmats[0]): # Dir name
dirname = os.path.dirname(os.path.normpath(lmats[0]))
if not dirname or dirname == '.':
basename = 'output'
else:
basename = os.path.basename(dirname)
else: # Explicit path and file name prefix is provided
dirname, basename = os.path.split(lmats[0])
out_prefix = Filename(os.path.join(dirname, basename))
htmlfile = out_prefix + HTML_SUFFIX
else:
out_prefix = Filename(input_files[0].split('_mhl')[0])
htmlfile = out_prefix + HTML_SUFFIX
def read_samples():
"""Read samples"""
print(gray('\nPlease, wait, processing files in parallel...\n'))
void_sample_cnt: int = 0
# Enable parallelization with 'spawn' under known platforms
if platform.system() and not args.sequential: # Only for known systems
mpctx = mp.get_context('fork')
with mpctx.Pool(processes=min(os.cpu_count(),
len(input_files))) as pool:
async_results = [pool.apply_async(
process,
args=[input_files[num], # file name
True if num < args.controls else False], # is ctrl?
kwds=kwargs
) for num in range(len(input_files))]
for file, (sample, tree, out, stat, err) in zip(
input_files, [r.get() for r in async_results]):
if err is Err.NO_ERROR:
samples.append(sample)
trees[sample] = tree
taxids[sample] = out.get_taxlevels()
counts[sample] = out.counts
accs[sample] = out.accs
scores[sample] = out.scores
stats[sample] = stat
mintaxas[sample] = stat.mintaxa
elif err is Err.VOID_SAMPLE:
void_sample_cnt += 1
elif err is Err.VOID_CTRL:
print('There were void controls.', red('Aborting!'))
exit(1)
else: # sequential processing of each sample
for num, file in enumerate(input_files):
(sample, tree, out, stat, err) = process(
file, True if num < args.controls else False, **kwargs)
if err is Err.NO_ERROR:
samples.append(sample)
trees[sample] = tree
taxids[sample] = out.get_taxlevels()
counts[sample] = out.counts
accs[sample] = out.accs
scores[sample] = out.scores
stats[sample] = stat
mintaxas[sample] = stat.mintaxa
elif err is Err.VOID_SAMPLE:
void_sample_cnt += 1
elif err is Err.VOID_CTRL:
print('There were void controls.', red('Aborting!'))
exit(1)
raw_samples.extend(samples) # Store raw sample names
if not raw_samples:
print('All the samples are void.', red('Aborting!'))
exit(2)
elif void_sample_cnt:
print(yellow('Warning! '), void_sample_cnt, ' of the ',
len(input_files), ' input samples are ', yellow('VOID!'))
def analyze_samples():
"""Cross analysis of samples in parallel by taxlevel"""
print(gray('Please, wait. Performing cross analysis in parallel...\n'))
if platform.system() and not args.sequential: # Only for known systems
mpctx = mp.get_context('fork') # Important for OSX&Win
with mpctx.Pool(processes=min(os.cpu_count(), len(
target_ranks))) as pool:
async_results = [pool.apply_async(
process_rank,
args=[level],
kwds=kwargs
) for level in target_ranks]
for level, (smpls, abunds, accumulators, score) in zip(
target_ranks,
[r.get() for r in async_results]):
samples.extend(smpls)
counts.update(abunds)
accs.update(accumulators)
scores.update(score)
else: # sequential processing of each selected rank
for level in target_ranks:
(smpls, abunds,
accumulators, score) = process_rank(level, **kwargs)
samples.extend(smpls)
counts.update(abunds)
accs.update(accumulators)
scores.update(score)
def summarize_samples():
"""Summary of samples in parallel by type of cross-analysis"""
# timing initialization
summ_start_time: float = time.perf_counter()
print(gray('Please, wait. Generating summaries in parallel...'))
# Update kwargs with more parameters for the followings func calls
kwargs.update({'samples': samples})
# Get list of set of samples to summarize (note pylint bug #776)
# pylint: disable=unsubscriptable-object
target_analysis: col.OrderedDict[str, None] = col.OrderedDict({
f'{raw}_{study}': None for study in [STR_EXCLUSIVE, STR_CONTROL]
for raw in raw_samples
for smpl in samples if smpl.startswith(f'{raw}_{study}')
})
# pylint: enable=unsubscriptable-object
# Add shared and control_shared analysis if they exist (are not void)
for study in [STR_SHARED, STR_CONTROL_SHARED]:
for smpl in samples:
if smpl.startswith(study):
target_analysis[study] = None
break
if platform.system() and not args.sequential: # Only for known systems
mpctx = mp.get_context('fork')
with mpctx.Pool(processes=min(os.cpu_count(),
len(input_files))) as pool:
async_results = [pool.apply_async(
summarize_analysis,
args=[analysis],
kwds=kwargs
) for analysis in target_analysis]
for analysis, (summary, abund, acc, score) in zip(
target_analysis, [r.get() for r in async_results]):
if summary: # Avoid adding empty samples
summaries.append(summary)
counts[summary] = abund
accs[summary] = acc
scores[summary] = score
else: # sequential processing of each selected rank
for analysis in target_analysis:
(summary, abund,
acc, score) = summarize_analysis(analysis, **kwargs)
if summary is not None: # Avoid adding empty samples
summaries.append(summary)
counts[summary] = abund
accs[summary] = acc
scores[summary] = score
# Timing results
print(gray('Summary elapsed time:'),
f'{time.perf_counter() - summ_start_time:.3g}', gray('sec'))
def generate_krona():
"""Generate Krona plot with all the results via Krona 2.0 XML spec"""
print(gray('\nBuilding the taxonomy multiple tree... '), end='')
sys.stdout.flush()
krona: KronaTree = KronaTree(samples,
num_raw_samples=len(raw_samples),
stats=stats,
min_score=Score(
min([min(scores[sample].values())
for sample in samples
if len(scores[sample])])),
max_score=Score(
max([max(scores[sample].values())
for sample in samples
if len(scores[sample])])),
scoring=scoring,
)
polytree.grow(ontology=ncbi,
abundances=counts,
accs=accs,
scores=scores)
print(green('OK!'))
if not args.nohtml:
print(gray('Generating interactive plot (') + magenta(htmlfile) +
gray(')... '), end='')
sys.stdout.flush()
polytree.toxml(ontology=ncbi, krona=krona)
krona.tohtml(htmlfile, pretty=False)
print(green('OK!'))
def save_extra_output():
"""Save extra output with results via pandas DataFrame"""
# Initial check and info
if extra is Extra.FULL or extra is Extra.DYNOMICS:
vprint(blue('INFO:'),
gray('Saving extra output as an Excel file.'))
elif extra is Extra.CSV:
vprint(blue('INFO:'),
gray('Saving extra output as CSV files.'))
elif extra is Extra.TSV:
vprint(blue('INFO:'),
gray('Saving extra output as TSV files.'))
elif extra is Extra.MULTICSV:
vprint(blue('INFO:'),
gray('Saving extra output as multiple CSV files.'))
else:
raise Exception(f'ERROR! Unknown Extra option "{extra}"')
# Setup of extra file name
xlsxwriter: pd.ExcelWriter = None
sv_base: Filename = Filename(htmlfile.split('.html')[0])
sv_ext: Filename = None
sv_kargs: Dict[str, str] = {}
if extra is Extra.FULL or extra is Extra.DYNOMICS:
xlsx_name: Filename = Filename(htmlfile.split('.html')[0] +
'.xlsx')
print(gray(f'Generating Excel {str(extra).lower()} summary (') +
magenta(xlsx_name) + gray(')... '), end='')
sys.stdout.flush()
xlsxwriter = pd.ExcelWriter(xlsx_name)
elif extra in [Extra.CSV, Extra.TSV, Extra.MULTICSV]:
if extra in [Extra.CSV, Extra.MULTICSV]:
sv_ext = Filename('csv')
sv_kargs = {}
elif extra is Extra.TSV:
sv_ext = Filename('tsv')
sv_kargs = {'sep': '\t'}
print(gray(f'Generating {str(extra).lower()} extra output (') +
magenta('[' + sv_base + '.]*.' + sv_ext)
+ gray(')... '), end='')
sys.stdout.flush()
else:
raise Exception(f'ERROR! Unknown Extra option "{extra}"')
odict_rows: Dict[Id, List] = col.OrderedDict()
# Save basic statistics of raw samples
stat_frame: pd.DataFrame = pd.DataFrame.from_records(
{raw: stats[raw].to_odict() for raw in raw_samples},
index=stats[raw_samples[0]].to_odict().keys())
if extra is Extra.FULL or extra is Extra.DYNOMICS:
stat_frame.to_excel(xlsxwriter, sheet_name=STATS_SHEET_NAME)
elif extra in [Extra.CSV, Extra.TSV, Extra.MULTICSV]:
stat_frame.to_csv(sv_base + '.stat.' + sv_ext, **sv_kargs)
# Save taxid related statistics per sample
if extra in [Extra.FULL, Extra.CSV, Extra.TSV, Extra.MULTICSV]:
polytree.to_odict(ontology=ncbi, odict=odict_rows)
# Generate the pandas DataFrame from items and export to Extra
iterable_1 = [samples, [COUNT, UNASSIGNED, SCORE]]
cols1 = pd.MultiIndex.from_product(iterable_1,
names=['Samples', 'Stats'])
iterable_2 = [['Details'], ['Rank', 'Name']]
cols2 = pd.MultiIndex.from_product(iterable_2)
cols = cols1.append(cols2)
data_frame: pd.DataFrame = pd.DataFrame.from_dict(
odict_rows, orient='index', columns=cols)
data_frame.index.names = ['Id']
if extra in [Extra.CSV, Extra.TSV]:
data_frame.to_csv(sv_base + '.data.' + sv_ext, **sv_kargs)
elif extra is Extra.MULTICSV:
for sample in samples: # Only save taxa with counts per sample
sub_df = data_frame[
data_frame[sample, 'count'] > 0][[sample, 'Details']]
csv_name: Filename
# Shared samples need help (sv_base) to get the path right
if sample.startswith(STR_SHARED):
csv_name = Filename(sv_base + '_' + sample
+ '.data.' + sv_ext)
else:
csv_name = Filename(sample + '.data.' + sv_ext)
sub_df.to_csv(csv_name, **sv_kargs)
else:
data_frame.to_excel(xlsxwriter, sheet_name=str(extra))
elif extra is Extra.DYNOMICS:
target_ranks: List = [Rank.NO_RANK]
if args.controls: # if controls, add specific ranks as targets
if args.strain:
target_ranks.extend(Rank.selected_ranks_ext)
else:
target_ranks.extend(Rank.selected_ranks)
for rank in target_ranks: # Once for no rank dependency (NO_RANK)
indexes: List[int] = None
sheet_name: str = 'RCF sheet'
columns: List[str] = ['__Rank', '__Name']
if args.controls:
indexes = [i for i in range(len(raw_samples), len(samples))
# Check if sample ends in _(STR_CONTROL)_(rank)
if (STR_CONTROL in samples[i].split('_')[-2:]
and rank.name.lower() in
samples[i].split('_')[-1:])]
sheet_name = f'{STR_CONTROL}_{rank.name.lower()}'
columns.extend([samples[i].replace(
'_' + STR_CONTROL + '_' + rank.name.lower(), '')
for i in indexes])
if rank is Rank.NO_RANK: # No rank dependency
indexes = list(range(len(raw_samples)))
sheet_name = f'raw_samples_{rank.name.lower()}'
columns.extend(raw_samples)
polytree.to_odict(ontology=ncbi, odict=odict_rows,
cmplxcruncher=True,
sample_indexes=indexes)
data_frame = pd.DataFrame.from_dict(odict_rows,
orient='index',
columns=columns)
data_frame.index.names = ['Id']
data_frame.to_excel(xlsxwriter, sheet_name=sheet_name)
else:
raise Exception(f'ERROR! Unknown Extra option "{extra}"')
if xlsxwriter is not None:
xlsxwriter.save()
print(green('OK!'))
# Serialize dataframes in compressed pickle files
if args.pickle > 0:
# Serialize dataframe with basic statistics of raw samples
vprint(blue('INFO:'),
gray('Serializing dataframes with stats and data.'))
pkl_file: Filename = sv_base + '.stat' + PKL_SUFFIX
print(gray(f'Generating output file ') +
magenta(pkl_file) + gray(')... '), end='')
sys.stdout.flush()
stat_frame.to_pickle(pkl_file, compression='infer', protocol=-1)
print(green('OK!'))
# Serialize dataframe with taxid related statistics per sample
pkl_file = sv_base + '.data' + PKL_SUFFIX
print(gray(f'Generating output file ') +
magenta(pkl_file) + gray(')... '), end='')
sys.stdout.flush()
data_frame.to_pickle(pkl_file, compression='infer', protocol=-1)
print(green('OK!'))
if args.pickle > 1: # Serializing 'samples' as well
vprint(blue('INFO:'),
gray('Serializing input sample\'s dict of TaxTree(s).'))
pkl_file = sv_base + '.samples' + PKL_SUFFIX
print(gray(f'Generating output file ') +
magenta(pkl_file) + gray(')... '), end='')
sys.stdout.flush()
with bz2.BZ2File(pkl_file, 'wb') as fbz2:
pickle.dump(trees, fbz2, pickle.HIGHEST_PROTOCOL)
print(green('OK!'))
# timing initialization
start_time: float = time.time()
# Program header
print(f'\n=-= {sys.argv[0]} =-= v{__version__} - {__date__}'
f' =-= by {__author__} =-=\n')
sys.stdout.flush()
# Parse arguments
argparser = configure_parser()
args: argparse.Namespace = argparser.parse_args()
clarks: List[Filename] = args.clark
generics: List[Filename] = args.generic
krakens: List[Filename] = args.kraken
lmats: List[Filename] = args.lmat
outputs: List[Filename] = args.file
input_files: List[Filename]
nodesfile: Filename = Filename(os.path.join(args.nodespath, NODES_FILE))
namesfile: Filename = Filename(os.path.join(args.nodespath, NAMES_FILE))
out_prefix: Filename = Filename(args.outprefix)
collapse: bool = not args.nokollapse
excluding: Set[Id] = set(args.exclude)
including: Set[Id] = set(args.include)
# parse those arguments related to enumerations
scoring: Scoring = Scoring[args.scoring]
extra: Extra = Extra[args.extra]
summary: Summary = Summary[args.summary]
# Target ranks are currently hardwired in the Rank class
target_ranks: List[Rank] = Rank.selected_ranks
# Check and parse generic format, if selected
genfmt: GenericFormat = None
if args.generic:
genfmt = parse_generic()
# Check arguments related to advanced modes of running
check_advanced_modes()
# Choose right classifier, scoring, control and regular input files
plasmidfile: Filename = None
classifier: Classifier = None
process: Callable[..., Tuple[Sample, TaxTree, SampleDataById,
SampleStats, Err]]
select_inputs()
check_controls()
# Select the right output files (output prefix and HTML filename)
htmlfile: Filename = None
if out_prefix is None: # Infer from inputs
infer_rcf_outputs()
elif out_prefix.endswith('.html') or out_prefix.endswith('.htm'):
htmlfile = out_prefix # Support legacy --outhtml option
else:
htmlfile = Filename(out_prefix + HTML_SUFFIX)
# Load NCBI nodes, names and build children
ncbi: Taxonomy = Taxonomy(nodesfile, namesfile, plasmidfile,
collapse, excluding, including, args.debug)
# If dummy flag enabled, just create dummy krona and exit
if args.dummy:
_debug_dummy_plot(ncbi, htmlfile, scoring)
exit(0)
# Declare variables of known data before the core analysis
samples: List[Sample] = []
raw_samples: List[Sample] = []
# Declare variables that will hold results for the samples analyzed
trees: Dict[Sample, TaxTree] = {}
counts: Dict[Sample, Counter[Id]] = {}
accs: Dict[Sample, Counter[Id]] = {}
taxids: Dict[Sample, TaxLevels] = {}
scores: Dict[Sample, Dict[Id, Score]] = {}
stats: Dict[Sample, SampleStats] = {}
mintaxas: Dict[Sample, int] = {}
# Define dictionary of parameters for methods to be called (to be extended)
kwargs = {'controls': args.controls,
'ontology': ncbi,
'classifier': classifier,
'genfmt': genfmt,
'scoring': scoring,
'minscore': args.minscore,
'ctrlminscore': (
args.ctrlminscore
if args.ctrlminscore is not None else args.minscore),
'mintaxa': args.mintaxa,
'ctrlmintaxa': args.ctrlmintaxa,
'debug': args.debug, 'root': args.takeoutroot,
}
# Read the samples in parallel
read_samples()
# Update kwargs with more parameters for the followings func calls
kwargs.update({'taxids': taxids, 'counts': counts, 'scores': scores,
'accs': accs, 'raw_samples': raw_samples,
'mintaxas': mintaxas})
kwargs.pop('mintaxa') # mintaxa info is included in mintaxas dict
kwargs.pop('ctrlmintaxa') # ctrlmintaxa info is included in mintaxas dict
# Avoid cross analysis if just one report file or explicitly stated by flag
if len(raw_samples) > 1 and not args.avoidcross:
analyze_samples()
if summary is not Summary.AVOID:
summaries: List[Sample] = []
summarize_samples()
if summary is Summary.ONLY:
samples = raw_samples + summaries
else:
samples.extend(summaries)
# Final result generation is done in sequential mode
polytree: MultiTree = MultiTree(samples=samples)
generate_krona()
if _USE_PANDAS:
if not _USE_OPENPYXL and (
extra is Extra.FULL or extra is Extra.DYNOMICS):
extra = Extra.CSV
print(yellow('WARNING!'),
'Openpyxl python package not installed:\n\tExtra output '
'cannot be saved as Excel. Falling back to CSV format.')
save_extra_output()
else:
print(yellow('WARNING!'),
'Pandas python package not installed:\n'
'\tExtra output cannot be saved.')
# Timing results
print(gray('Total elapsed time:'), time.strftime(
"%H:%M:%S", time.gmtime(time.time() - start_time)))
if __name__ == '__main__':
main()