-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathINSAR4SM_point.py
executable file
·197 lines (155 loc) · 7.38 KB
/
INSAR4SM_point.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
SM estimation at a single point
Author: Kleanthis Karamvasis
Organization: National Technical University of Athens
Creation Date: 04/09/2021
Project: INSAR4SM
"""
#---------------------Import libraries --------------
from joblib import Parallel, delayed
import pandas as pd
import geopandas as gpd
from tqdm import tqdm
from random import sample
import matplotlib.pyplot as plt
import numpy as np
#--------------------- INSAR4SM functionalities --------------
from insar4sm.classes import INSAR4SM_stack, SM_point
#%%##########################################################################
#----------- Input arguments ------------------------#
#############################################################################
# The ISMN station
station_name = 'FordDryLake'
#station_name = 'DesertCenter'
orbit_time = '02:00:00'
#orbit_nums = ['100','173']
#orbit_nums = ['100']
#sq_sizes = [50,100,200,250,300,400,500]
# orbit_num = '100'
orbit_num = '166'
sq_size = 250
###############################################################################
# the name of your experiment
projectname = 'INSAR4SM_ISMN_newtest2_{}_sq{}_{}'.format(orbit_num, sq_size, station_name)
# the directory of the topstack processing
topstackDir = '/RSL02/SM_NA/Topstack_processing_orbit_{}'.format(orbit_num)
# the AOI geojson file for your project
# ensure that AOI is inside your topstack stack
#AOI = '/RSL02/SM_NA/Plotting/bbox_aoi.geojson'
AOI = '/RSL02/SM_NA/ISMN/{}/{}_AOI.geojson'.format(station_name,station_name)
# the meteorological file. You can either provide an ERA5-land file or a csv file with 3 columns (Datetimes, tp__m, skt__K).
meteo_file = '/RSL02/SM_NA/era5/era5_land_na_orbit_{}.nc'.format(orbit_num)
# set to True in case you provide an ERA5-Land file
ERA5_flag = True
# In case you downloaded surface soil moisture from ERA5-land, set to True for comparison purposes
ERA5_sm_flag = True
# the output directory
export_dir = '/RSL02/SM_NA/{}'.format(projectname)
# soil information datasets (https://soilgrids.org/)
sand_soilgrids = 79
clay_soilgrids = 10
# the insitu measurements in csv format
ISMN_csv = '/RSL02/SM_NA/ISMN/{}/ismn_station_{}.csv'.format(station_name, station_name)
# geometrical infromation regarding ISMN station
#IMSN_polygon = gpd.read_file('/RSL02/SM_NA/ISMN/{}/{}_neighborhood.geojson'.format(station_name, station_name))['geometry']
IMSN_polygon = gpd.read_file('/RSL02/SM_NA/ISMN/{}/{}_neighborhood_r{}.geojson'.format(station_name,
station_name,
sq_size))['geometry']
ISMN_point = IMSN_polygon.centroid
#%%##########################################################################
#----------- Step A: Preparation of slc stack ------------------------#
#############################################################################
stack = INSAR4SM_stack(topstackDir = topstackDir,
projectname = projectname,
AOI = AOI,
meteo_file = meteo_file,
ERA5_flag = ERA5_flag,
sand = sand_soilgrids,
clay = clay_soilgrids,
orbit_time = orbit_time,
export_dir = export_dir)
stack.prepare_datasets()
stack.plot()
stack.get_dry_SARs()
stack.calc_insar_stack()
#%%###########################################################################
#------- Step B: SM Estimation -------#
##############################################################################
stack.sm_points = ISMN_point
stack.sm_polygons = IMSN_polygon
stack.n_sm_points = len(stack.sm_points)
sm_point_ts = SM_point(stack, sm_ind=0)
sm_point_ts.get_DS_info(stack)
sm_point_ts.calc_covar_matrix()
sm_point_ts.get_DS_geometry(stack)
sm_point_ts.calc_driest_date()
sm_point_ts.driest_date = pd.to_datetime('20180803')
sm_point_ts.calc_sm_sorting()
# in_situ_data = pd.read_csv('/RSL02/SM_NA/comparison_FordDryLake.csv')
# print(in_situ_data['sm_plot'].loc[sm_point_ts.best_sorting])
sm_point_ts.calc_sm_coherence()
sm_point_ts.calc_sm_index()
sm_point_ts.inversion()
#%%###########################################################################
#------- Step C: Plotting -------#
##############################################################################
#-- Plotting raw coherence
fig, ax = plt.subplots(1,1, figsize=(15, 15))
img = ax.imshow(sm_point_ts.coh_full_DS[0,:,:])
y_label_list = [sar_datetime.strftime('%d-%m-%Y') for sar_datetime in sm_point_ts.slc_dates.date]
ax.set_yticks(np.arange(len(y_label_list)))
ax.set_yticklabels(y_label_list)
fig.colorbar(img)
plt.title('Driest Date: {}'.format(sm_point_ts.driest_date))
plt.savefig('{}/Raw_coh_{}_sq{}.png'.format(stack.export_dir, station_name, sq_size), dpi=200)
plt.close()
#-- Plotting sm coherence
fig, ax = plt.subplots(1,1, figsize=(15, 15))
img = ax.imshow(sm_point_ts.coh_sm[0,:,:])
y_label_list = [sar_datetime.strftime('%d-%m-%Y') for sar_datetime in sm_point_ts.slc_dates.date]
ax.set_yticks(np.arange(len(y_label_list)))
ax.set_yticklabels(y_label_list)
fig.colorbar(img)
plt.savefig('{}/SM_coh_{}_sq{}.png'.format(stack.export_dir, station_name, sq_size), dpi=200)
plt.close()
#%%###########################################################################
#------- Step D: Comparison -------#
##############################################################################
IMSN_df = pd.read_csv(ISMN_csv)
IMSN_df.index = pd.to_datetime(IMSN_df['Datetime'])
IMSN_df = IMSN_df['sm_plot']
# select only particular hour
IMSN_df = IMSN_df.at_time(orbit_time).to_frame()
#insar4sm_df = pd.DataFrame(np.ones_like(sm_point_ts.best_sorting), columns=['insar4sm'])
sm_estimations = {'SM0':sm_point_ts.SM0,
'SM_index':sm_point_ts.SM_index,
'insar4sm':sm_point_ts.sm_inverted
}
insar4sm_df = pd.DataFrame(sm_estimations)
#insar4sm_df = pd.DataFrame(sm_point_ts.SM_index, columns=['insar4sm'])
insar4sm_df.index = pd.to_datetime(stack.slc_datetimes)
insar4sm_df.index = insar4sm_df.index + pd.Timedelta('{} hour'.format(pd.to_datetime(orbit_time).hour))
comparison_df = IMSN_df.join(insar4sm_df, how='outer').dropna()
comparison_df['Datetime'] = comparison_df.index
comparison_df.to_csv('{}/comparison_{}.csv'.format(stack.export_dir,station_name), index=False)
predictions = comparison_df['insar4sm'].values
targets = comparison_df['sm_plot'].values
n = predictions.shape[0]
rmse = np.linalg.norm(predictions - targets) / np.sqrt(n)
comparison_df[['sm_plot', 'SM0', 'SM_index', 'insar4sm']].plot(figsize=(13,13), style='.-')
plt.title('RMSE: {} m3/m3'.format(round(rmse,2)))
plt.savefig('{}/SM_estimations_{}_sq{}.png'.format(stack.export_dir, station_name, sq_size), dpi=200)
plt.savefig('{}/SM_estimations_{}_sq{}.svg'.format(stack.export_dir, station_name, sq_size), format="svg")
plt.close()
plot_df = IMSN_df.join(insar4sm_df, how='outer').dropna(subset=['insar4sm'])
df = plot_df.iloc[sm_point_ts.best_sorting].round(decimals = 2).copy()
df['Datetime'] = df.index
cell_text = []
for row in range(len(df)):
cell_text.append(df.iloc[row])
plt.table(cellText=cell_text, colLabels=df.columns,fontsize=14, loc='center')
plt.axis('off')
plt.savefig('{}/Ordering_{}_sq{}.png'.format(stack.export_dir, station_name, sq_size), dpi=200)
plt.close()