-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path09R-Prepare-TCGA-data-for-MMvec-and-ANCOM-BC.R
executable file
·488 lines (403 loc) · 33.7 KB
/
09R-Prepare-TCGA-data-for-MMvec-and-ANCOM-BC.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#-----------------------------------------------------------------------------
# 09R-Prepare-TCGA-data-for-MMvec-and-ANCOM-BC.R
# Copyright (c) 2021--, Greg Poore
# Purposes:
# - Load data with Weizmann overlapping features
# - Format data for MMvec to examine co-occurences of (bacteria and fungi) and (immune cells and fungi)
# - Perform ANCOM-BC on subsetted data (without batch correction) for tumor vs. NAT analyses
#-----------------------------------------------------------------------------
#----------------------------------------------------------#
# Load environments
#----------------------------------------------------------#
# Load dependencies
require(devtools)
require(doMC)
require(phyloseq)
require(microbiome)
require(vegan)
require(dplyr)
require(tidyr)
require(tibble)
require(reshape2)
require(ggpubr)
require(ggsci)
require(ANCOMBC)
require(biomformat)
require(Rhdf5lib)
require(ggrepel)
numCores <- detectCores()
registerDoMC(cores=numCores)
#----------------------------------------------------------#
# Import data
#----------------------------------------------------------#
load("Interim_data/snmDataFungi_DecontamV2_25Mar22.RData", verbose = T)
load("Interim_data/tcga_data_taxa_levels_features_shared_with_Weizmann_29Mar22.RData", verbose = T)
load("Interim_data/metaQiitaWGS_RNA_AllSeqPlatforms_Joined_WithBamcounts_and_Data_25Mar22.RData", verbose = T)
#----------------------------------------------------------#
# Load cibersort immune cell data and merge to mycobiome metadata
#----------------------------------------------------------#
# save(gID2TaxAll,
# rep200Data_WGS_RNA_Matched,
# metaQiitaWGS_RNA_HiSeq_Filt_Nonzero,
# file = "data_for_mmvec_tables_7Aug21.RData")
# load("data_for_mmvec_tables_7Aug21.RData")
# Load relative abundance cibersort table from Thorsson et al. 2018 Immunity
# Only TCGA case IDs were provided for the mapping, so those are used here to
# map to TCGA mycobiome data
cibersortTCGA <- read.csv("Supporting_data/thorsson_2018_immunity_tcga_cibersort_edited_14Aug21.csv",
row.names = 1, stringsAsFactors = FALSE)
cibersortTCGAFormatted <- cibersortTCGA %>% rownames_to_column("tcga_case_id")
## Merge by tcga_case_id in metaQiitaCombined_Nonzero_SpeciesShared
dim(metaQiitaCombined_Nonzero_SpeciesShared) # 12750 41
# Check for non-unique overlap
sum(metaQiitaCombined_Nonzero_SpeciesShared$tcga_case_id %in% rownames(cibersortTCGA)) # 11723 (NB: is less than 14546 --> missing samples)
sum(rownames(cibersortTCGA) %in% metaQiitaCombined_Nonzero_SpeciesShared$tcga_case_id) # 7145 --> repeats exist
# Create mycobiome-matched cibersort immune cell table via merging
mycobiomeImmuneCells <- metaQiitaCombined_Nonzero_SpeciesShared %>% rownames_to_column("sampleid") %>%
select(sampleid, tcga_case_id) %>% droplevels() %>%
left_join(cibersortTCGAFormatted, by = "tcga_case_id") %>%
drop_na() %>%
select(-tcga_case_id) %>%
column_to_rownames("sampleid") -> mycobiomeImmuneCellsMerged
colnames(mycobiomeImmuneCellsMerged) <- gsub('([[:punct:]])|\\s+','',colnames(mycobiomeImmuneCellsMerged))
dim(mycobiomeImmuneCellsMerged) # 11723 22
sum(is.na(mycobiomeImmuneCellsMerged)) # 0
# Subset metadata
metaImmune <- droplevels(metaQiitaCombined_Nonzero_SpeciesShared[rownames(mycobiomeImmuneCellsMerged),])
metaImmunePT <- metaImmune %>% filter(sample_type == "Primary Tumor") %>% droplevels()
metaImmuneBDN <- metaImmune %>% filter(sample_type == "Blood Derived Normal") %>% droplevels()
metaImmunePT_WGS <- metaImmunePT %>% filter(experimental_strategy == "WGS") %>% droplevels()
metaImmunePT_RNA <- metaImmunePT %>% filter(experimental_strategy == "RNA-Seq") %>% droplevels()
metaImmunePT_WGS_HMS <- metaImmunePT_WGS %>% filter(data_submitting_center_label == "Harvard Medical School") %>% droplevels()
metaImmunePT_RNA_UNC <- metaImmunePT_RNA %>% filter(data_submitting_center_label == "University of North Carolina") %>% droplevels()
# Subset immune cell data
mycobiomeImmuneCellsMergedPT <- mycobiomeImmuneCellsMerged[rownames(metaImmunePT),]
mycobiomeImmuneCellsMergedPT_WGS <- mycobiomeImmuneCellsMerged[rownames(metaImmunePT_WGS),]
mycobiomeImmuneCellsMergedPT_RNA <- mycobiomeImmuneCellsMerged[rownames(metaImmunePT_RNA),]
mycobiomeImmuneCellsMergedPT_WGS_HMS <- mycobiomeImmuneCellsMerged[rownames(metaImmunePT_WGS_HMS),]
mycobiomeImmuneCellsMergedPT_RNA_UNC <- mycobiomeImmuneCellsMerged[rownames(metaImmunePT_RNA_UNC),]
#-----------------------Create matching mycobiome data-----------------------#
# Load WIS matching fungi
rep200TaxSplit_Fungi_Paired_to_Weizmann <- read.csv("Supporting_data/rep200TaxSplit_Fungi_Paired_To_Weizmann_Final.csv", stringsAsFactors = FALSE, row.names = 1)
rep200TaxSplit_Fungi_Paired_to_Weizmann_formatted <- rep200TaxSplit_Fungi_Paired_to_Weizmann %>%
rownames_to_column("OGU") %>% column_to_rownames("species")
colnames(rep200FungiSpeciesShared_Nonzero) <- rep200TaxSplit_Fungi_Paired_to_Weizmann_formatted[colnames(rep200FungiSpeciesShared_Nonzero), "OGU"]
# Load WIS matching bacteria
load("Interim_data/shared_bacterial_features_at_each_taxa_level_29Mar22.RData")
rep200Data_Matched2ImmunePT_Bacteria <- rep200Data_WGS_RNA_Matched_Bacteria[rownames(metaImmunePT),sharedSpeciesBacteria$intersectedOGUs]
dim(rep200Data_Matched2ImmunePT_Bacteria) # 9159 267
rep200Data_Matched2ImmunePT_Fungi_species <- rep200FungiSpeciesShared_Nonzero[rownames(metaImmunePT),]
dim(rep200Data_Matched2ImmunePT_Fungi_species) # 9159 34
# Sanity check
all(rownames(metaImmunePT) == rownames(rep200Data_Matched2ImmunePT_Fungi_species)) # TRUE
all(rownames(rep200Data_Matched2ImmunePT_Bacteria) == rownames(rep200Data_Matched2ImmunePT_Fungi_species)) # TRUE
#-----------------------Write biom tables and metadata files-----------------------#
# Write metadata to text file
metaImmunePT %>% rownames_to_column("sampleid") %>%
write.table(file = "Interim_data/species_intersected_with_WIS_metadata_immune_all_primary_tumors.txt",
quote = FALSE, sep = "\t",row.names = FALSE, col.names = TRUE)
# Save biom files of full data
rep200Data_Matched2ImmunePT_Bacteria_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Bacteria))
write_biom(rep200Data_Matched2ImmunePT_Bacteria_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_rep200_counts_bacteria_all_primary_tumors.biom")
rep200Data_Matched2ImmunePT_Fungi_species_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Fungi_species))
write_biom(rep200Data_Matched2ImmunePT_Fungi_species_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_rep200_counts_fungi_all_primary_tumors.biom")
mycobiomeImmuneCellsMergedPT_BIOM <- make_biom(t(mycobiomeImmuneCellsMergedPT))
write_biom(mycobiomeImmuneCellsMergedPT_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_cibersort_rel_abund_all_TCGA_primary_tumors.biom")
## Subset to HMS
rep200Data_Matched2ImmunePT_Bacteria_HMS_PT <- rep200Data_Matched2ImmunePT_Bacteria[rownames(metaImmunePT_WGS_HMS),]
rep200Data_Matched2ImmunePT_Fungi_species_HMS_PT <- rep200Data_Matched2ImmunePT_Fungi_species[rownames(metaImmunePT_WGS_HMS),]
metaImmunePT_WGS_HMS %>% rownames_to_column("sampleid") %>%
write.table(file = "Interim_data/species_intersected_with_WIS_metadata_immune_WGS_Harvard_Primary_Tumor.txt",
quote = FALSE, sep = "\t",row.names = FALSE, col.names = TRUE)
# Save biom files of HMS data
rep200Data_Matched2ImmunePT_Bacteria_HMS_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Bacteria_HMS_PT))
write_biom(rep200Data_Matched2ImmunePT_Bacteria_HMS_PT_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_rep200_counts_bacteria_TCGA_Harvard_WGS_Primary_Tumor.biom")
rep200Data_Matched2ImmunePT_Fungi_species_HMS_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Fungi_species_HMS_PT))
write_biom(rep200Data_Matched2ImmunePT_Fungi_species_HMS_PT_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_rep200_counts_fungi_TCGA_Harvard_WGS_Primary_Tumor.biom")
mycobiomeImmuneCellsMergedPT_WGS_HMS_BIOM <- make_biom(t(mycobiomeImmuneCellsMergedPT_WGS_HMS))
write_biom(mycobiomeImmuneCellsMergedPT_WGS_HMS_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_cibersort_rel_abund_TCGA_Harvard_WGS_Primary_Tumor.biom")
## Subset to UNC
rep200Data_Matched2ImmunePT_Bacteria_UNC_PT <- rep200Data_Matched2ImmunePT_Bacteria[rownames(metaImmunePT_RNA_UNC),]
rep200Data_Matched2ImmunePT_Fungi_species_UNC_PT <- rep200Data_Matched2ImmunePT_Fungi_species[rownames(metaImmunePT_RNA_UNC),]
metaImmunePT_RNA_UNC %>% rownames_to_column("sampleid") %>%
write.table(file = "Interim_data/species_intersected_with_WIS_metadata_immune_RNA_UNC_Primary_Tumor.txt",
quote = FALSE, sep = "\t",row.names = FALSE, col.names = TRUE)
# Save biom files of UNC data
rep200Data_Matched2ImmunePT_Bacteria_UNC_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Bacteria_UNC_PT))
write_biom(rep200Data_Matched2ImmunePT_Bacteria_UNC_PT_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_rep200_counts_bacteria_TCGA_UNC_RNA_Primary_Tumor.biom")
rep200Data_Matched2ImmunePT_Fungi_species_UNC_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Fungi_species_UNC_PT))
write_biom(rep200Data_Matched2ImmunePT_Fungi_species_UNC_PT_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_rep200_counts_fungi_TCGA_UNC_RNA_Primary_Tumor.biom")
mycobiomeImmuneCellsMergedPT_RNA_UNC_BIOM <- make_biom(t(mycobiomeImmuneCellsMergedPT_RNA_UNC))
write_biom(mycobiomeImmuneCellsMergedPT_RNA_UNC_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_cibersort_rel_abund_TCGA_UNC_RNA_Primary_Tumor.biom")
## Subset to all WGS
rep200Data_Matched2ImmunePT_Bacteria_WGS_PT <- rep200Data_Matched2ImmunePT_Bacteria[rownames(metaImmunePT_WGS),]
rep200Data_Matched2ImmunePT_Fungi_species_WGS_PT <- rep200Data_Matched2ImmunePT_Fungi_species[rownames(metaImmunePT_WGS),]
metaImmunePT_WGS %>% rownames_to_column("sampleid") %>%
write.table(file = "Interim_data/species_intersected_with_WIS_metadata_immune_WGS_AllSeqCenters_Primary_Tumor.txt",
quote = FALSE, sep = "\t",row.names = FALSE, col.names = TRUE)
# Save biom files of WGS data
rep200Data_Matched2ImmunePT_Bacteria_WGS_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Bacteria_WGS_PT))
write_biom(rep200Data_Matched2ImmunePT_Bacteria_WGS_PT_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_rep200_counts_bacteria_TCGA_AllSeqCenters_WGS_Primary_Tumor.biom")
rep200Data_Matched2ImmunePT_Fungi_species_WGS_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Fungi_species_WGS_PT))
write_biom(rep200Data_Matched2ImmunePT_Fungi_species_WGS_PT_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_rep200_counts_fungi_TCGA_AllSeqCenters_WGS_Primary_Tumor.biom")
mycobiomeImmuneCellsMergedPT_WGS_BIOM <- make_biom(t(mycobiomeImmuneCellsMergedPT_WGS))
write_biom(mycobiomeImmuneCellsMergedPT_WGS_BIOM, biom_file = "Interim_data/species_intersected_with_WIS_immune_cibersort_rel_abund_TCGA_AllSeqCenters_WGS_Primary_Tumor.biom")
#--------------------------------Write genus level files--------------------------------#
# There's one sample that is not shared between the metaImmunePT and rep200FungiGenusShared_Nonzero (13767.58cfa833e4b0c9d6adf6dc00),
# so they need to be subsetted
rep200TaxSplit <- read.csv("Supporting_data/rep200_lineage_map_split.csv", stringsAsFactors = FALSE, row.names = 1)
rep200Kingdoms <- read.csv("Supporting_data/rep200_gOTU_kingdom_mapping.csv", stringsAsFactors = FALSE)
rep200Kingdoms_Fungi <- rep200Kingdoms[which(rep200Kingdoms$kingdom == "fungi"),]
rep200Kingdoms_Bacteria <- rep200Kingdoms[which(rep200Kingdoms$kingdom == "bacteria"),]
# rep200TaxSplit_Fungi <- rep200TaxSplit[rownames(rep200TaxSplit) %in% rep200Kingdoms_Fungi$genomeID,,drop=FALSE]
# dim(rep200TaxSplit_Fungi) # 320 7
rep200TaxSplit_Bacteria <- rep200TaxSplit[rownames(rep200TaxSplit) %in% rep200Kingdoms_Bacteria$genomeID,,drop=FALSE]
dim(rep200TaxSplit_Bacteria) # 11080 7
## Subset
genusSamplesPT <- intersect(rownames(metaImmunePT), rownames(rep200FungiGenusShared_Nonzero))
metaImmunePT_genus <- droplevels(metaImmunePT[genusSamplesPT,])
rep200Data_Matched2ImmunePT_Fungi_genus <- rep200FungiGenusShared_Nonzero[genusSamplesPT,]
rep200Data_Matched2ImmunePT_Bacteria_Filt <- rep200Data_WGS_RNA_Matched_Bacteria[genusSamplesPT,]
dim(rep200Data_Matched2ImmunePT_Fungi_genus) # 9158 54
dim(rep200Data_Matched2ImmunePT_Bacteria_Filt) # 9158 11071
# Sanity check
all(rownames(rep200Data_Matched2ImmunePT_Fungi_genus) == rownames(rep200Data_Matched2ImmunePT_Bacteria_Filt)) # TRUE
# Build phyloseq object
ps_rep200Data_Matched2ImmunePT_Bacteria_Filt <- phyloseq(otu_table(rep200Data_Matched2ImmunePT_Bacteria_Filt, taxa_are_rows = FALSE),
tax_table(as.matrix(rep200TaxSplit_Bacteria)),
sample_data(metaImmunePT_genus))
## Aggregate counts
ps_rep200Data_Matched2ImmunePT_Bacteria_Filt_genus = aggregate_taxa(ps_rep200Data_Matched2ImmunePT_Bacteria_Filt, "Genus")
rep200Data_Matched2ImmunePT_Bacteria_Filt_genus <- data.frame(t(otu_table(ps_rep200Data_Matched2ImmunePT_Bacteria_Filt_genus)))
colnames(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus) <- gsub("^g__","",colnames(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus))
dim(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus) # 9158 2675
# Load WIS shared bacteria genera and subset
load("Interim_data/shared_bacterial_features_at_each_taxa_level_29Mar22.RData")
rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared <- rep200Data_Matched2ImmunePT_Bacteria_Filt_genus[,colnames(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus) %in% unique(sharedGenusBacteria$intersectedTaxa)]
dim(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared) # 9158 196
## Save data
dfSharedSave <- data.frame(domain = c(rep("fungi",length(colnames(rep200Data_Matched2ImmunePT_Fungi_genus))),
rep("bacteria",length(unique(sharedGenusBacteria$intersectedTaxa)))),
shared_genera = c(colnames(rep200Data_Matched2ImmunePT_Fungi_genus),
unique(sharedGenusBacteria$intersectedTaxa)))
dfSharedSave %>% write.csv("Figures_data/Supplementary_Figures/mmvec_shared_genera_fungi_bacteria_2Apr22.csv", row.names = FALSE)
#-----------------------Write biom tables and metadata files-----------------------#
metaImmunePT_genus_WGS <- metaImmunePT_genus %>% filter(experimental_strategy == "WGS") %>% droplevels()
metaImmunePT_genus_RNA <- metaImmunePT_genus %>% filter(experimental_strategy == "RNA-Seq") %>% droplevels()
metaImmunePT_genus_WGS_HMS <- metaImmunePT_genus_WGS %>% filter(data_submitting_center_label == "Harvard Medical School") %>% droplevels()
metaImmunePT_genus_RNA_UNC <- metaImmunePT_genus_RNA %>% filter(data_submitting_center_label == "University of North Carolina") %>% droplevels()
# Write metadata to text file
metaImmunePT_genus %>% rownames_to_column("sampleid") %>%
write.table(file = "Interim_data/genus_intersected_with_WIS_metadata_immune_all_primary_tumors.txt",
quote = FALSE, sep = "\t",row.names = FALSE, col.names = TRUE)
# Save biom files of full data
rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared))
write_biom(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_rep200_counts_bacteria_all_primary_tumors.biom")
rep200Data_Matched2ImmunePT_Fungi_genus_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Fungi_genus))
write_biom(rep200Data_Matched2ImmunePT_Fungi_genus_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_rep200_counts_fungi_all_primary_tumors.biom")
mycobiomeImmuneCellsMergedPT_BIOM <- make_biom(t(mycobiomeImmuneCellsMergedPT))
write_biom(mycobiomeImmuneCellsMergedPT_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_cibersort_rel_abund_all_TCGA_primary_tumors.biom")
## Subset to HMS
rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_HMS_PT <- rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared[rownames(metaImmunePT_genus_WGS_HMS),]
rep200Data_Matched2ImmunePT_Fungi_genus_HMS_PT <- rep200Data_Matched2ImmunePT_Fungi_genus[rownames(metaImmunePT_genus_WGS_HMS),]
metaImmunePT_genus_WGS_HMS %>% rownames_to_column("sampleid") %>%
write.table(file = "Interim_data/genus_intersected_with_WIS_metadata_immune_WGS_Harvard_Primary_Tumor.txt",
quote = FALSE, sep = "\t",row.names = FALSE, col.names = TRUE)
# Save biom files of HMS data
rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_HMS_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_HMS_PT))
write_biom(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_HMS_PT_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_rep200_counts_bacteria_TCGA_Harvard_WGS_Primary_Tumor.biom")
rep200Data_Matched2ImmunePT_Fungi_genus_HMS_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Fungi_genus_HMS_PT))
write_biom(rep200Data_Matched2ImmunePT_Fungi_genus_HMS_PT_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_rep200_counts_fungi_TCGA_Harvard_WGS_Primary_Tumor.biom")
mycobiomeImmuneCellsMergedPT_WGS_HMS_BIOM <- make_biom(t(mycobiomeImmuneCellsMergedPT_WGS_HMS))
write_biom(mycobiomeImmuneCellsMergedPT_WGS_HMS_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_cibersort_rel_abund_TCGA_Harvard_WGS_Primary_Tumor.biom")
## Subset to UNC
rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_UNC_PT <- rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared[rownames(metaImmunePT_genus_RNA_UNC),]
rep200Data_Matched2ImmunePT_Fungi_genus_UNC_PT <- rep200Data_Matched2ImmunePT_Fungi_genus[rownames(metaImmunePT_genus_RNA_UNC),]
metaImmunePT_genus_RNA_UNC %>% rownames_to_column("sampleid") %>%
write.table(file = "Interim_data/genus_intersected_with_WIS_metadata_immune_RNA_UNC_Primary_Tumor.txt",
quote = FALSE, sep = "\t",row.names = FALSE, col.names = TRUE)
# Save biom files of UNC data
rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_UNC_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_UNC_PT))
write_biom(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_UNC_PT_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_rep200_counts_bacteria_TCGA_UNC_RNA_Primary_Tumor.biom")
rep200Data_Matched2ImmunePT_Fungi_genus_UNC_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Fungi_genus_UNC_PT))
write_biom(rep200Data_Matched2ImmunePT_Fungi_genus_UNC_PT_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_rep200_counts_fungi_TCGA_UNC_RNA_Primary_Tumor.biom")
mycobiomeImmuneCellsMergedPT_RNA_UNC_BIOM <- make_biom(t(mycobiomeImmuneCellsMergedPT_RNA_UNC))
write_biom(mycobiomeImmuneCellsMergedPT_RNA_UNC_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_cibersort_rel_abund_TCGA_UNC_RNA_Primary_Tumor.biom")
## Subset to all WGS
rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_WGS_PT <- rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared[rownames(metaImmunePT_genus_WGS),]
rep200Data_Matched2ImmunePT_Fungi_genus_WGS_PT <- rep200Data_Matched2ImmunePT_Fungi_genus[rownames(metaImmunePT_genus_WGS),]
metaImmunePT_genus_WGS %>% rownames_to_column("sampleid") %>%
write.table(file = "Interim_data/genus_intersected_with_WIS_metadata_immune_WGS_AllSeqCenters_Primary_Tumor.txt",
quote = FALSE, sep = "\t",row.names = FALSE, col.names = TRUE)
# Save biom files of WGS data
rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_WGS_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_WGS_PT))
write_biom(rep200Data_Matched2ImmunePT_Bacteria_Filt_genus_shared_WGS_PT_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_rep200_counts_bacteria_TCGA_AllSeqCenters_WGS_Primary_Tumor.biom")
rep200Data_Matched2ImmunePT_Fungi_genus_WGS_PT_BIOM <- make_biom(t(rep200Data_Matched2ImmunePT_Fungi_genus_WGS_PT))
write_biom(rep200Data_Matched2ImmunePT_Fungi_genus_WGS_PT_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_rep200_counts_fungi_TCGA_AllSeqCenters_WGS_Primary_Tumor.biom")
mycobiomeImmuneCellsMergedPT_WGS_BIOM <- make_biom(t(mycobiomeImmuneCellsMergedPT_WGS))
write_biom(mycobiomeImmuneCellsMergedPT_WGS_BIOM, biom_file = "Interim_data/genus_intersected_with_WIS_immune_cibersort_rel_abund_TCGA_AllSeqCenters_WGS_Primary_Tumor.biom")
#----------------------------------------------------------#
# Load all of Thorsson et al. 2018 Supplementary Table 1
#----------------------------------------------------------#
# Load Table S1 from Thorsson et al. 2018 Immunity *excluding* the CIBERSORT data
# Only TCGA case IDs were provided for the mapping, so those are used here to
# map to TCGA mycobiome data
thorssonTableS1 <- read.csv("Supporting_data/thorsson_2018_immunity_full_supplementary_table_S1.csv",
row.names = 1, stringsAsFactors = FALSE)
thorssonTableS1Formatted <- thorssonTableS1 %>% rownames_to_column("tcga_case_id")
## Merge by tcga_case_id in metaQiitaCombined_Nonzero_SpeciesShared
dim(metaQiitaCombined_Nonzero_SpeciesShared) # 12750 41
# Check for non-unique overlap
sum(metaQiitaCombined_Nonzero_SpeciesShared$tcga_case_id %in% rownames(thorssonTableS1)) # 12609 (NB: is less than 14546 --> missing samples)
sum(rownames(thorssonTableS1) %in% metaQiitaCombined_Nonzero_SpeciesShared$tcga_case_id) # 7576 --> repeats exist
# Create mycobiome-matched cibersort immune cell table via merging
metaQiitaCombined_Nonzero_SpeciesShared %>% rownames_to_column("sampleid") %>%
select(sampleid, tcga_case_id) %>% droplevels() %>%
left_join(thorssonTableS1Formatted, by = "tcga_case_id") %>%
drop_na(Immune.Subtype) %>%
select(-tcga_case_id) %>%
column_to_rownames("sampleid") -> mycobiomeThorssonTableS1Merged
colnames(mycobiomeThorssonTableS1Merged) <- gsub('([[:punct:]])|\\s+','',colnames(mycobiomeThorssonTableS1Merged))
dim(mycobiomeThorssonTableS1Merged) # 11101 35
# Subset metadata
metaThorsson <- droplevels(metaQiitaCombined_Nonzero_SpeciesShared[rownames(mycobiomeThorssonTableS1Merged),])
metaThorssonPT <- metaThorsson %>% filter(sample_type == "Primary Tumor") %>% droplevels()
metaThorssonPT_WGS <- metaThorssonPT %>% filter(experimental_strategy == "WGS") %>% droplevels()
metaThorssonPT_RNA <- metaThorssonPT %>% filter(experimental_strategy == "RNA-Seq") %>% droplevels()
metaThorssonPT_WGS_HMS <- metaThorssonPT_WGS %>% filter(data_submitting_center_label == "Harvard Medical School") %>% droplevels()
metaThorssonPT_RNA_UNC <- metaThorssonPT_RNA %>% filter(data_submitting_center_label == "University of North Carolina") %>% droplevels()
# Subset immune cell data
mycobiomeThorssonTableS1MergedPT <- mycobiomeThorssonTableS1Merged[rownames(metaThorssonPT),]
mycobiomeThorssonTableS1MergedPT_WGS <- mycobiomeThorssonTableS1Merged[rownames(metaThorssonPT_WGS),]
mycobiomeThorssonTableS1MergedPT_RNA <- mycobiomeThorssonTableS1Merged[rownames(metaThorssonPT_RNA),]
mycobiomeThorssonTableS1MergedPT_WGS_HMS <- mycobiomeThorssonTableS1Merged[rownames(metaThorssonPT_WGS_HMS),]
mycobiomeThorssonTableS1MergedPT_RNA_UNC <- mycobiomeThorssonTableS1Merged[rownames(metaThorssonPT_RNA_UNC),]
mycobiomeThorssonTableS1MergedPT_WGS %>%
rownames_to_column("sample_id") %>%
write.csv("Interim_data/thorsson_et_al_2018_tableS1_other_metadata_2Apr22.csv", row.names = FALSE)
#----------------------------------------------------------#
# ANCOM-BC tumor vs NAT
# - Subset data to individual seq center and data type
#----------------------------------------------------------#
load("Interim_data/decontamResultsV2_25Mar22.RData", verbose = T)
metaQiitaCombined_Nonzero_DecontamV2_TvsNAT <- metaQiitaCombined_Nonzero_DecontamV2 %>% filter(sample_type %in% c("Primary Tumor", "Solid Tissue Normal")) %>% droplevels()
metaQiitaCombined_Nonzero_DecontamV2_TvsNAT$sample_type <- relevel(metaQiitaCombined_Nonzero_DecontamV2_TvsNAT$sample_type, ref = "Solid Tissue Normal")
rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero_TvsNAT <- rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero[rownames(metaQiitaCombined_Nonzero_DecontamV2_TvsNAT),]
psFungiTCGADecontam_TvsNAT <- phyloseq(otu_table(rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero_TvsNAT, taxa_are_rows = FALSE),
tax_table(as.matrix(rep200TaxSplit_Fungi_Paired_to_Weizmann)),
sample_data(metaQiitaCombined_Nonzero_DecontamV2_TvsNAT))
# psFungiTCGADecontam_TvsNAT <- subset_samples(psFungiTCGADecontam, sample_type %in% c("Primary Tumor", "Solid Tissue Normal"))
# Subset to seq center
psFungiTCGADecontam_TvsNAT_HMS <- subset_samples(psFungiTCGADecontam_TvsNAT, data_submitting_center_label == "Harvard Medical School")
psFungiTCGADecontam_TvsNAT_BCM <- subset_samples(psFungiTCGADecontam_TvsNAT, data_submitting_center_label == "Baylor College of Medicine")
psFungiTCGADecontam_TvsNAT_MDA <- subset_samples(psFungiTCGADecontam_TvsNAT, data_submitting_center_label == "MD Anderson - Institute for Applied Cancer Science")
psFungiTCGADecontam_TvsNAT_WashU <- subset_samples(psFungiTCGADecontam_TvsNAT, data_submitting_center_label == "Washington University School of Medicine")
psFungiTCGADecontam_TvsNAT_UNC <- subset_samples(psFungiTCGADecontam_TvsNAT, data_submitting_center_label == "University of North Carolina")
psFungiTCGADecontam_TvsNAT_CMS <- subset_samples(psFungiTCGADecontam_TvsNAT, data_submitting_center_label == "Canada's Michael Smith Genome Sciences Centre")
psFungiTCGADecontam_TvsNAT_Broad <- subset_samples(psFungiTCGADecontam_TvsNAT, data_submitting_center_label == "Broad Institute of MIT and Harvard")
psFungiTCGADecontam_TvsNAT_Broad_WGS <- subset_samples(psFungiTCGADecontam_TvsNAT_Broad, experimental_strategy == "WGS")
psFungiTCGADecontam_TvsNAT_Broad_RNA <- subset_samples(psFungiTCGADecontam_TvsNAT_Broad, experimental_strategy == "RNA-Seq")
## Source function
source("00-Functions.R") # for runAncomBC_TvsNAT() function
## Call function
runAncomBC_TvsNAT(psFungiTCGADecontam_TvsNAT_HMS)
runAncomBC_TvsNAT(psFungiTCGADecontam_TvsNAT_BCM)
runAncomBC_TvsNAT(psFungiTCGADecontam_TvsNAT_MDA)
runAncomBC_TvsNAT(psFungiTCGADecontam_TvsNAT_WashU)
runAncomBC_TvsNAT(psFungiTCGADecontam_TvsNAT_Broad_WGS)
runAncomBC_TvsNAT(psFungiTCGADecontam_TvsNAT_UNC, ancombcLibCut = 0)
runAncomBC_TvsNAT(psFungiTCGADecontam_TvsNAT_CMS, ancombcLibCut = 0)
# Broad_RNA does not have sufficient samples for comparing T vs NAT
#----------------------------------------------------------#
# ANCOM-BC tumor 1 cancer type vs all others: fungi
# - Subset data to individual seq center and data type
#----------------------------------------------------------#
load("Interim_data/decontamResultsV2_25Mar22.RData", verbose=T)
metaQiitaCombined_Nonzero_DecontamV2_PT <- metaQiitaCombined_Nonzero_DecontamV2 %>% filter(sample_type == "Primary Tumor") %>% droplevels()
metaQiitaCombined_Nonzero_DecontamV2_BDN <- metaQiitaCombined_Nonzero_DecontamV2 %>% filter(sample_type == "Blood Derived Normal") %>% droplevels()
rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero_PT <- rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero[rownames(metaQiitaCombined_Nonzero_DecontamV2_PT),]
rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero_BDN <- rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero[rownames(metaQiitaCombined_Nonzero_DecontamV2_BDN),]
# rep200FungiSpeciesShared_Nonzero,
# metaQiitaCombined_Nonzero_SpeciesShared,
# Run using WIS-intersected features. Need to reconvert species names back to OGUs. Ok since only 1 OGU/species
taxTableWISconversion <- rep200TaxSplit_Fungi_Paired_to_Weizmann %>% rownames_to_column("OGUs") %>% column_to_rownames("species")
metaQiitaCombined_Nonzero_SpeciesShared_PT <- metaQiitaCombined_Nonzero_SpeciesShared %>% filter(sample_type == "Primary Tumor") %>% droplevels()
rep200FungiSpeciesShared_Nonzero_PT <- rep200FungiSpeciesShared_Nonzero[rownames(metaQiitaCombined_Nonzero_SpeciesShared_PT),]
colnames(rep200FungiSpeciesShared_Nonzero_PT) <- taxTableWISconversion[colnames(rep200FungiSpeciesShared_Nonzero_PT), "OGUs"]
source("00-Functions.R") # for runAncomBC_1VsAll_Fungi() function
# Run for WIS intersected features
runAncomBC_1VsAll_Fungi(countData=rep200Data_Matched2ImmunePT_Fungi_species,
metaData = metaImmunePT,
taxTable = rep200TaxSplit_Fungi_Paired_to_Weizmann,
qvalCutoff = 0.05, showTopX = 3, decontamResV2 = decontamResultsV2,
ancombcLibCut = 100,
fileString = "WIS_fungi_ancombc_PT_1vsAll_",
taxaPlotLabel = "genus")
# Run for decontaminated data v2 PT
runAncomBC_1VsAll_Fungi(countData=rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero_PT,
metaData = metaQiitaCombined_Nonzero_DecontamV2_PT,
taxTable = rep200TaxSplit_Fungi_Paired_to_Weizmann,
qvalCutoff = 0.05, showTopX = 3, decontamResV2 = decontamResultsV2,
ancombcLibCut = 1000,
fileString = "tmp_decontamV2_fungi_ancombc_PT_1vsAll_",
taxaPlotLabel = "genus")
# Run for decontaminated data v2 BDN
runAncomBC_1VsAll_Fungi(countData=rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero_BDN,
metaData = metaQiitaCombined_Nonzero_DecontamV2_BDN,
taxTable = rep200TaxSplit_Fungi_Paired_to_Weizmann,
qvalCutoff = 0.05, showTopX = 3, decontamResV2 = decontamResultsV2,
ancombcLibCut = 1000,
fileString = "bdn_decontamV2_fungi_ancombc_PT_1vsAll_",
taxaPlotLabel = "genus")
#----------------------------------------------------------#
# ANCOM-BC tumor 1 cancer type vs all others: bacteria
# - Subset data to individual seq center and data type
#----------------------------------------------------------#
load("Interim_data/shared_bacterial_features_at_each_taxa_level_29Mar22.RData", verbose = T)
# Sanity check
rep200Data_Matched2ImmunePT_Bacteria_WIS <- rep200Data_Matched2ImmunePT_Bacteria[,colnames(rep200Data_Matched2ImmunePT_Bacteria) %in%
sharedSpeciesBacteria$intersectedOGUs]
all(rownames(rep200Data_Matched2ImmunePT_Bacteria_WIS)==rownames(metaImmunePT)) # TRUE
rep200Data_Matched2ImmunePT_Bacteria_WIS_Nonzero <- rep200Data_Matched2ImmunePT_Bacteria_WIS[!rowSums(rep200Data_Matched2ImmunePT_Bacteria_WIS)==0,]
metaImmunePT_Bacteria_WIS_Nonzero <- droplevels(metaImmunePT[!rowSums(rep200Data_Matched2ImmunePT_Bacteria_WIS)==0,])
# For WIS intersected features
source("00-Functions.R") # for runAncomBC_1VsAll_Bacteria() function
runAncomBC_1VsAll_Bacteria(countData=rep200Data_Matched2ImmunePT_Bacteria_WIS_Nonzero,
metaData = metaImmunePT_Bacteria_WIS_Nonzero,
taxTable = rep200TaxSplit_Bacteria_Formatted,
ancombcLibCut = 100,
qvalCutoff = 0.05, showTopX = 3,
fileString = "WIS_bacteria_nonzero_ancombc_PT_1vsAll_",
taxaPlotLabel = "genus")
#----------------------------------------------------------#
# ANCOM-BC tumor stage I vs stage IV for fungi
# - Subset data to individual seq center and data type
#----------------------------------------------------------#
# Remove unclear or non-useful stages
metaQiitaCombined_Nonzero_DecontamV2_Path <- droplevels(metaQiitaCombined_Nonzero_DecontamV2[! (metaQiitaCombined_Nonzero_DecontamV2$pathologic_stage_label == "Not available" |
metaQiitaCombined_Nonzero_DecontamV2$pathologic_stage_label == "I or II NOS" |
metaQiitaCombined_Nonzero_DecontamV2$pathologic_stage_label == "Stage 0" |
metaQiitaCombined_Nonzero_DecontamV2$pathologic_stage_label == "Stage IS" |
metaQiitaCombined_Nonzero_DecontamV2$pathologic_stage_label == "Stage Tis" |
metaQiitaCombined_Nonzero_DecontamV2$pathologic_stage_label == "Stage X"),])
tumorStageVector <- factor(metaQiitaCombined_Nonzero_DecontamV2_Path$pathologic_stage_label)
levels(tumorStageVector) <- list(StageI = c("Stage I", "Stage IA", "Stage IB", "Stage IC"),
StageII = c("Stage II", "Stage IIA", "Stage IIB", "Stage IIC"),
StageIII = c("Stage III", "Stage IIIA", "Stage IIIB", "Stage IIIC"),
StageIV = c("Stage IV", "Stage IVA", "Stage IVB", "Stage IVC"))
metaQiitaCombined_Nonzero_DecontamV2_Path$pathologic_stage_label_binned <- tumorStageVector
table(metaQiitaCombined_Nonzero_DecontamV2_Path$pathologic_stage_label_binned)
metaQiitaCombined_Nonzero_DecontamV2_Path_PT <- metaQiitaCombined_Nonzero_DecontamV2_Path %>% filter(sample_type == "Primary Tumor") %>% droplevels()
rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero_Path_PT <- rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero[rownames(metaQiitaCombined_Nonzero_DecontamV2_Path_PT),]
# Run for decontaminated data v2
source("00-Functions.R") # for runAncomBC_Stage_Fungi() function
# # Run Stage I vs Stage IV
runAncomBC_Stage_Fungi(countData=rep200Data_WGS_RNA_HiSeq_Fungi_DecontamV2_Nonzero_Path_PT,
metaDataPath = metaQiitaCombined_Nonzero_DecontamV2_Path_PT,
taxTable = rep200TaxSplit_Fungi_Paired_to_Weizmann,
stagesCmp = c("Stage I","Stage IV"),
stageAllFlag = TRUE,
qvalCutoff = 0.05, showTopX = 3, decontamResV2 = decontamResultsV2,
ancombcLibCutWGS = 100,
fileString = "stage_decontamV2_fungi_ancombc_PT_StageI_vs_StageIV_",
taxaPlotLabel = "genus")