-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
53 lines (43 loc) · 2.25 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# This is the streamlit frontend UI/UX setup
import streamlit as st
import pandas as pd
import requests
import os
FAST_API_URL = os.getenv('FAST_API_URL', 'https://britneybot-llm.onrender.com')
# Load the data
@st.cache_data
def load_data():
return pd.read_csv("studentgrades.csv")
data = load_data()
st.title("BritneyBot: Pop Star Statistician 💃🎤✨📊✨📈✨")
st.write("Ask me about the student grades data below, and I'll answer as Britney!")
# Add some Britney-themed decorations
st.sidebar.title("Hi, Cuties! It's me, BritneyBot💋")
st.sidebar.image("britneybot2.jpg", use_column_width=True)
st.sidebar.write("I'm so glad you're here! Even though I love studying, I also love making pop music! What are my top favorite songs, EVER?? I'm so glad you asked!:")
st.sidebar.write("💖 ...Baby One More Time 💖")
st.sidebar.write("👗 Oops!... I Did It Again 👗")
st.sidebar.write("🐍 Toxic 🐍")
st.sidebar.write("🥀 Gimme More 🥀")
# User input
user_question = st.text_input("Okay let's do this! What's your question about the student grades data?🤔")
if user_question:
try:
with st.spinner("Britney is thinking...💭"):
response = requests.post(f"{FAST_API_URL}/query/", json={"text": user_question}, timeout=30)
if response.status_code == 200:
result = response.json()["result"]
if result and len(result) > 20: # Ensure we have a substantial response
st.write(result)
else:
st.warning("Oops! Britney's response was too short. Can you try asking again? 🎤💖")
else:
st.error(f"An error occurred while processing your request. Status code: {response.status_code}")
except requests.RequestException as e:
st.error(f"Unable to reach the API. Error: {e}")
# Display the data
st.subheader("Student Grades Data📑 ")
st.dataframe(data)
#Footer styling
st.write("I am AI bot built by built by Glitter Pile AI using open source Ollama model llama3:8b. I have been trained to answer questions about this sample data set in a fun and emoji-filled way! Hope you enjoyed your chat with me! xo💋BritneyBot")
st.write("*Visit www.glitterpile.blog for more fun things!*")