-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathargs.py
201 lines (151 loc) · 8.14 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import multiprocessing
import os
from dataclasses import dataclass
from pathlib import Path
from typing import Literal
from simple_parsing import field, list_field
@dataclass(kw_only=True)
class TrainingArgs:
"""
Argument class for use with simple_parsing that handles the basics of most LLM training scripts. Subclass this to add more arguments.
"""
data_dir: Path = field(alias="-d")
hf_model_name: str = field(default="roberta-base", alias="--model")
"HuggingFace model identifier. This is used to construct the model architecture and load pretrained weights if not specified otherwise."
from_scratch: bool = field(default=False)
"Do not use pre-trained weights to initialize the model."
saved_checkpoint_path: str | None = field(default=None, alias="--checkpoint")
"Path to a saved pytorch-lightning checkpoint. Use the wandb:<wandb-run-id> syntax to load a checkpoint from W&B."
resume: bool = False
language_modeling_objective: Literal["mlm", "clm"] = field(default="mlm")
"Whether to train a masked language model or a causal language model."
train_file: str = field(default="train.txt")
"Name of the training file."
val_file: str = field(default="val.txt")
"Name of the validation file."
tokenizer_path: str | None = field(default=None)
"Path to a saved tokenizer to switch the vocabulary. If None, use the hf_model_name."
###############################
##### Training constants ######
###############################
base_unit: Literal["samples", "tokens", "optimizer-steps", "iters"] = field(default="optimizer-steps")
"Unit of all training constants. They will be converted to optimizer_steps in __post_init__."
training_goal: int = field(default=100_000)
eval_interval: float = field(default=0.1)
"Interval between evaluations. If < 1, use as percentage of training_goal."
eval_samples: int = field(default=-1)
"Number of samples on the val dataset during evaluation. If -1, use full val dataset."
save_interval: int | float = field(default=0.1)
"Interval between model checkpoints. If < 1, use as percentage of training_goal."
warmup_period: float = field(default=0.005)
"Length of lr warmup. If < 1, use as percentage of training_goal."
lr_decay_period: int = field(default=-1)
"If -1, decay until end of training."
###########################
##### Hyperparameters #####
###########################
block_size: int = field(default=512)
"The sequence length of samples."
learning_rate: float = field(default=3e-4)
batch_size: int = field(default=128, alias="-b")
weight_decay: float = 0.1
beta1: float = 0.9
beta2: float = 0.95
grad_clip: float = field(default=1.0)
"If -1, disable."
lr_schedule: Literal["cosine", "linear", "constant", "cosine_with_restarts", "polynomial"] = field(default="cosine")
#######################################
## Hardware acceleration & precision ##
#######################################
accelerator: Literal["cuda", "cpu", "tpu", "mps"] = field(default="cuda")
"Hardware accelerator to use."
num_devices: int = field(default=1)
distributed_strategy: Literal["ddp", "fsdp", "auto"] = field(
default="auto",
help="Distributed training strategy to use. If `auto`, will select automatically (no distributed strategy is used when using a single device).",
aliases="--ds",
)
micro_batch_size: int = field(default=None, alias="--mb")
"""If None, use batch_size // num_devices. This is the batch size per device, not the total batch size.
You should tune this so that you do not get GPU RAM OOM errors. We automatically calculate the gradient accumulation steps to achieve your desired `batch_size`."""
eval_micro_batch_size: int = field(default=None)
"If None, use micro_batch_size."
gradient_accumulation_steps: int = field(default=-1)
"If -1, set automatically based on batch_size and micro_batch_size."
precision: Literal["32-true", "16-mixed", "bf16-mixed"] = "bf16-mixed"
compile: bool = field(default=False)
"torch.compile model for faster training."
workers: int = field(default=4, alias="-w")
preprocessing_workers: int = field(default=-1, aliases="--pw")
"Number of workers for preprocessing the datasets. If -1, use all available CPUs."
data_preprocessing_only: bool = field(default=False)
conserve_disk_space: bool = field(default=False)
overwrite_data_cache: bool = field(default=False)
############################
###### Logging & Misc ######
############################
run_name: str = field(default=None, alias="-n")
"Run name for logging."
seed: int | None = field(default=None)
only_val: bool = field(default=False)
"Only run validation."
val_before_training: bool = field(default=True)
"Run one validation epoch before training."
out_dir: Path = field(default="out/")
wandb_tags: list[str] = list_field(default=[], alias="-t")
"Tags for wandb."
offline: bool = field(default=False)
"If True, don't log to wandb."
debug: bool = field(default=False)
"If true, wait for debugger to attach at the start of the script."
force_deterministic: bool = field(default=False)
"Force PyTorch operations to be deterministic. Could be slower."
fast_dev_run: bool = field(default=False)
"Do fast run through training and validation with reduced sizes."
def __post_init__(self):
assert self.num_devices > 0
if self.micro_batch_size is None:
# NOTE: you need to make sure that micro_batch_size can fit into the GPU memory
self.micro_batch_size = self.batch_size // self.num_devices
assert self.batch_size % self.num_devices == 0
self.iter_batch_size = self.micro_batch_size * self.num_devices
if self.eval_interval < 1:
self.eval_interval = int(self.eval_interval * self.training_goal)
if self.save_interval < 1:
self.save_interval = int(self.save_interval * self.training_goal)
if self.warmup_period < 1:
self.warmup_period = int(self.warmup_period * self.training_goal)
if self.lr_decay_period == -1:
self.lr_decay_period = self.training_goal
elif self.lr_decay_period < 1:
self.lr_decay_period = int(self.lr_decay_period * self.training_goal)
assert self.batch_size % self.micro_batch_size == 0
if self.gradient_accumulation_steps == -1:
self.gradient_accumulation_steps = self.batch_size // self.iter_batch_size
assert self.gradient_accumulation_steps > 0
assert self.batch_size == self.micro_batch_size * self.num_devices * self.gradient_accumulation_steps
if self.tokenizer_path is None:
self.tokenizer_path = self.hf_model_name
assert self.hf_model_name is not None
if self.eval_micro_batch_size is None:
self.eval_micro_batch_size = self.micro_batch_size
# Calculate training constants
if self.base_unit == "samples":
UNITS_PER_STEP = self.batch_size
elif self.base_unit == "tokens":
assert self.block_size is not None, "block_size must be set if base_unit is tokens"
UNITS_PER_STEP = self.batch_size * self.block_size
elif self.base_unit == "optimizer-steps":
UNITS_PER_STEP = 1
elif self.base_unit == "iters":
UNITS_PER_STEP = self.gradient_accumulation_steps
else:
raise ValueError(f"Unknown training goal unit: {self.base_unit}")
self.training_goal = int(self.training_goal / UNITS_PER_STEP)
self.eval_interval = int(self.eval_interval / UNITS_PER_STEP)
self.save_interval = int(self.save_interval / UNITS_PER_STEP)
self.warmup_period = int(self.warmup_period / UNITS_PER_STEP)
self.lr_decay_period = int(self.lr_decay_period / UNITS_PER_STEP)
if self.preprocessing_workers == -1:
# Set to all available CPUs, handle SLURM case when only some CPUs are available to the job
self.preprocessing_workers = int(os.environ.get("SLURM_JOB_CPUS_PER_NODE", multiprocessing.cpu_count()))