-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinference_flexiedit.py
555 lines (475 loc) · 26.9 KB
/
inference_flexiedit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import os
import torch
import torchvision.transforms as T
from torchvision.utils import save_image
from torchvision.io import read_image
from diffusers import DDIMScheduler, StableDiffusionPipeline
from flexiedit.diffuser_utils import FlexiEditPipeline
from flexiedit.ti_diffuser_utils import TIGuidedPipeline
from flexiedit.attention_register import regiter_attention_editor_diffusers, register_conv_control_efficient, FE_AttentionStore
from flexiedit.attention_utils import FE_MutualSelfAttentionControl, FE_MutualSelfAttentionControlMaskAuto, FE_UnifiedSelfAttentionControl
import fire
from flexiedit.frequency_utils import get_freq_filter, freq_2d
from flexiedit.get_edited_words import find_edited_phrases
import numpy as np
from flexiedit.utils import slerp_tensor, load_512, txt_draw, latent2image, add_text_to_image, draw_mask, tensor2numpy, make_grid
from PIL import Image
import random
from pytorch_lightning import seed_everything
from box import Box
from collections import OrderedDict
import yaml
# Initialize Overwatch =>> Wraps `logging.Logger`
from overwatch import initialize_overwatch
overwatch = initialize_overwatch(__name__)
''' define hyperparameters '''
# low-pass filter settings
filter_type= "gaussian" #"butterworth"
n= 4 # gaussian parameter
# Sampling process settings
global alpha, reinversion_step, d_s, d_t, refined_step, masa_step_original, masa_step_target_branch, masa_step_retarget_branch
alpha = 0.7
d_t= 0.3
d_s= 0.3
refined_step = 0
masa_step_original = 4
masa_step_target_branch = 51
masa_step_retarget_branch = 0
def setup_seed(seed=1234):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def load_image(image_path, device):
""" Load an image, resize and center crop it. """
image = read_image(image_path)
image = image[:3].unsqueeze_(0).float() / 127.5 - 1. # [-1, 1]
image = T.Resize(512)(image)
image = T.CenterCrop(512)(image)
image = image.to(device)
return image
def get_word_inds(text: str, word_place: int, tokenizer):
""" Get indices of words in the provided text using tokenizer. """
split_text = text.split(" ")
if type(word_place) is str:
word_place = [i for i, word in enumerate(split_text) if word_place == word]
elif type(word_place) is int:
word_place = [word_place]
out = []
if len(word_place) > 0:
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
cur_len, ptr = 0, 0
for i in range(len(words_encode)):
cur_len += len(words_encode[i])
if ptr in word_place:
out.append(i + 1)
if cur_len >= len(split_text[ptr]):
ptr += 1
cur_len = 0
return out
def freq_exp(feat, mode, user_mask, auto_mask):
""" Frequency manipulation for latent space. """
feat = feat.view(4,1,64,64)
f_shape = feat.shape # 1, 4, 64, 64
LPF = get_freq_filter(f_shape, feat.device, filter_type, n, d_s, d_t) # d_s, d_t
f_dtype = feat.dtype
feat_low, feat_high, feat_sum, feat_low_alpha, feat_high_alpha, feat_low_alpha_high, feat_high_alpha_low, x_alpha_high_alpha_low = freq_2d(feat.to(torch.float64), LPF, alpha)
feat_low = feat_low.to(f_dtype)
feat_high = feat_high.to(f_dtype)
feat_sum = feat_sum.to(f_dtype)
feat_low_alpha = feat_low_alpha.to(f_dtype)
feat_high_alpha = feat_high_alpha.to(f_dtype)
feat_low_alpha_high = feat_low_alpha_high.to(f_dtype)
feat_high_alpha_low = feat_high_alpha_low.to(f_dtype)
# latent LPF
latent_low = feat_low.view(1,4,64,64)
# latent HPF
latent_high = feat_high.view(1,4,64,64)
# latent SUM (original)
latent_sum = feat_sum.view(1,4,64,64)
# latent_low_alpha = feat_low_alpha.view(1,4,64,64)
# latent_high_alpha = feat_high_alpha.view(1,4,64,64)
latent_low_alpha_high = feat_low_alpha_high.view(1,4,64,64)
latent_high_alpha_low = feat_high_alpha_low.view(1,4,64,64)
mask = torch.zeros_like(latent_sum)
if mode == "auto_mask":
auto_mask = auto_mask.unsqueeze(1) # [1,64,64] => [1,1,64,64]
mask = auto_mask.expand_as(latent_sum) # [1,1,64,64] => [1,4,64,64]
elif mode == "user_mask":
bbx_start_point, bbx_end_point = user_mask
mask[:, :, bbx_start_point[1]//8:bbx_end_point[1]//8, bbx_start_point[0]//8:bbx_end_point[0]//8] = 1
latents_shape = latent_sum.shape
random_gaussian = torch.randn(latents_shape, device=latent_sum.device)
# Apply gaussian scaling
g_range = random_gaussian.max() - random_gaussian.min()
l_range = latent_low_alpha_high.max() - latent_low_alpha_high.min()
random_gaussian = random_gaussian * (l_range/g_range)
# No scaling applied. If you wish to apply scaling to the mask, replace the following lines accordingly.
s_range, r_range, s_range2, r_range2 = 1, 1, 1, 1
latent_mask_h = latent_sum * (1 - mask) + (latent_low_alpha_high + (1-alpha)*random_gaussian) * (s_range/r_range) *mask # edit 할 부분에 high frequency가 줄어들고 가우시안 더하기
latent_mask_l = latent_sum * (1 - mask) + (latent_high_alpha_low + (1-alpha)*random_gaussian) * (s_range2/r_range2) *mask # edit 할 부분에 low frequency가 줄어들고 가우시안 더하기
return latent_mask_h, latent_mask_l, latent_sum # latent_low, latent_high, latent_sum
def setup_editor_and_params(masa_step, masa_layer, inject_uncond, inject_cond, save_path):
# default setting
editor = None
npi = False
npi_interp = 0
prox = None
quantile = None
guidance_scale = [1, 7.5]
#NOTE: In here, we set masa_step_target_branch to 51, which means the feature injection will not be performed.
editor = FE_MutualSelfAttentionControl(masa_step_target_branch, masa_layer, inject_uncond=inject_uncond, inject_cond=inject_cond)
npi = False #
npi_interp = 0
prox = None
quantile = None
return editor, npi, npi_interp, prox, quantile, guidance_scale
def main(
start_noise_interp: float = 0.0,
model_path = "../CompVis/stable-diffusion-v1-5",
out_dir: str = None,
source_image_path: str = None,
source_prompt = None,
target_prompt = None,
scale: float = 7.5,
inv_scale: float = 1,
query_intermediate: bool = False,
masa_step: int = 4,
masa_layer: int = 10,
inject_uncond: str = "src",
inject_cond: str = "src",
prox_step: int = 0,
prox: str = None,
quantile: float = 0.7,
npi: bool = False,
npi_interp: float = 0,
npi_step: int = 0,
num_inference_steps: int = 50,
editing_type: str = None,
reinversion_steps: int = 20,
cuda_device: str = "cuda:0",
blended_word: str = None,
bbx_start_point=None,
bbx_end_point=None
):
device = torch.device(cuda_device) if torch.cuda.is_available() else torch.device("cpu")
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
overwatch.info(f"[Frozen] 🥶 ==>> Loading FlexiEdit from [bold]{model_path}[/] Checkpoint")
flexiedit = FlexiEditPipeline.from_pretrained(model_path, scheduler=scheduler, cross_attention_kwargs={"scale": 0.5}).to(device)
source_image = load_image(source_image_path, device) # Normalize to the range [-1, 1]
#NOTE: save_path
save_path = os.path.join(out_dir, source_image_path.split("/")[-1].split(".")[0], target_prompt)
os.makedirs(save_path, exist_ok=True)
sample_count = len(os.listdir(save_path))
save_path = os.path.join(save_path, f"sample_{sample_count+1}")
os.makedirs(save_path, exist_ok=True)
prompts = [source_prompt, target_prompt]
setup_seed()
res=32
save_mask_timestep = 10
threshold = 0.05 # (0.02-0.15)
output_dir = save_path
edw_threshold = 0.15
#NOTE: Invert
ind = get_word_inds(source_prompt, blended_word[0], flexiedit.tokenizer)
assert len(ind) != 0, "The object name must in the source prompt."
editor = FE_AttentionStore(res=res, ref_token_idx=ind, save_mask_timestep=save_mask_timestep,
threshold=threshold, save_dir=output_dir, image_name="app")
#NOTE: automatic mask
if bbx_start_point == None and bbx_end_point == None:
edited_words = find_edited_phrases(source_image_path, source_prompt, target_prompt)
edw_indices = []
for edited_word in edited_words:
if " " in edited_word:
for word in edited_word.split():
ind = get_word_inds(target_prompt, word, flexiedit.tokenizer)
edw_indices.append(ind[0])
else:
ind = get_word_inds(target_prompt, edited_word, flexiedit.tokenizer)
edw_indices.append(ind[0])
assert len(edw_indices) != 0, "error: edited words is not detected"
editor.edw_token_idx = edw_indices
editor.save_edw_mask_timestep = 1
editor.edw_threshold = edw_threshold
regiter_attention_editor_diffusers(flexiedit, editor)
overwatch.info(f"1st stage 🔥 ==>> Inverting source image")
inv_start_code, inv_latents_list = flexiedit.invert(source_image,
source_prompt,
guidance_scale=inv_scale, # Here, if a tuple (a, b) is provided, proxinpi is used; currently set to 1.
num_inference_steps=num_inference_steps,
reinversion_steps = 0,
return_intermediates=True,
cuda_device=cuda_device,)
overwatch.info(f"[Finish] ==>> Inverting source image", ctx_level=1)
mask_appearance = editor.get_aggregate_mask()
flexiedit.set_app_mask(mask_appearance)
#NOTE: Automatic mask
if bbx_start_point == None and bbx_end_point == None:
overwatch.info(f"2nd stage 🔥 ==>> Refine DDIM latent using Automatic mask")
edw_mask = editor.get_edw_aggregate_mask()
latent_mask_h, latent_mask_l, latent_sum = freq_exp(inv_start_code, "auto_mask", None, edw_mask)
#NOTE: User provide user-defined mask
else:
edw_mask=None
overwatch.info(f"2nd stage 🔥 ==>> Refine DDIM latent using user-defined mask")
latent_mask_h, latent_mask_l, latent_sum = freq_exp(inv_start_code, "user_mask", (bbx_start_point, bbx_end_point), None)
# visualize latents_list
new_latents_list = [latent2image(flexiedit.vae, latent) for latent in inv_latents_list]
# If you want to save the latent visualization, uncomment the following code.
# for i, latent in enumerate(new_latents_list):
# save_image(latent, os.path.join(save_path, f"latent_{i}.png"))
# concat latents_list to one image using numpy
new_latents_list = [latent[0] for latent in new_latents_list][::5]
concat_latents_list = np.concatenate(new_latents_list, axis=1)
# save decoded latent visualization across all steps
# Image.fromarray(concat_latents_list).save(os.path.join(save_path, "decoded_latent_visualize.png"))
# source_image_mask = torch.from_numpy(draw_mask(tensor2numpy(source_image), bbx_start_point, bbx_end_point))
if start_noise_interp > 0:
random_code = flexiedit.prepare_latents(
start_code.shape[0],
start_code.shape[1],
512, 512,
dtype=start_code.dtype,
device=start_code.device,
generator=torch.Generator("cuda").manual_seed(42))
start_code = torch.cat([
start_code,
slerp_tensor(start_noise_interp, start_code, random_code)
], dim=0)
else:
latent_sum = latent_sum.expand(len(prompts), -1, -1, -1)
latent_mask_h = latent_mask_h.expand(len(prompts), -1, -1, -1)
latent_mask_l = latent_mask_l.expand(len(prompts), -1, -1, -1)
if prox == "none" or prox == "None":
prox = None
config0 = Box()
config0.model_path = model_path
config0.save_path = save_path
config0.source_image_path = source_image_path
config0.source_prompt = source_prompt
config0.target_prompt = target_prompt
config1 = Box()
config1.adain_start_step = 30
config1.adain_end_step = 50
config1.alpha = alpha
config1.n = n
config1.reinversion_step = reinversion_steps
config1.d_s = d_s
config1.d_t = d_t
config1.refined_step = refined_step
user_box = OrderedDict()
user_box["bbx_start_point"] = str(bbx_start_point)
user_box["bbx_end_point"] = str(bbx_end_point)
config1.user_bbx = user_box
overwatch.info(f"3rd stage 🔥 ==>> Generating image from DDIM latent")
overwatch.info(f"[Generate Image] [bold]FlexiEdit is performing", ctx_level=1)
editor, npi, npi_interp, prox, quantile, guidance_scale = setup_editor_and_params(masa_step, masa_layer, inject_uncond, inject_cond, save_path)
regiter_attention_editor_diffusers(flexiedit, editor)
output_mid = flexiedit(prompts,
latents=latent_mask_h, # start_code
num_inference_steps=num_inference_steps,
guidance_scale=[1, scale],
neg_prompt=source_prompt if npi else None,
prox=prox,
prox_step=prox_step,
quantile=quantile,
npi_interp=npi_interp,
npi_step=npi_step,
ref_intermediate_latents=None,
mode="FlexiEdit", #mode,
latent_filter=[latent_sum, None, None, None],
params={"n": n,
"alpha": alpha,
"reinversion_step": reinversion_steps,
"d_s": d_s,
"d_t": d_t,
"refined_step": refined_step,
"user_mask": [bbx_start_point, bbx_end_point],
"auto_mask": edw_mask,
"callback": flexiedit.get_adain_app_callback(config1.adain_start_step, config1.adain_end_step),
"cuda_device": cuda_device,
}
)
source_image_2 = ((output_mid[1] - 0.5)*2).unsqueeze(0)
ind = get_word_inds(target_prompt, blended_word[1], flexiedit.tokenizer)
assert len(ind) != 0, "The object name must in the target prompt."
editor = FE_AttentionStore(res=res, ref_token_idx=ind, save_mask_timestep=save_mask_timestep,
threshold=threshold, save_dir=output_dir, image_name="struct")
regiter_attention_editor_diffusers(flexiedit, editor)
#NOTE: Re-Inversion
overwatch.info(f"4th Stage 🔥 ==>> Starting re-inversion process using FlexiEdit only")
reinv_start_code, reinv_latents_list = flexiedit.invert(source_image_2,
source_prompt,
guidance_scale=inv_scale,
num_inference_steps=num_inference_steps, # reinversion step
reinversion_steps = reinversion_steps,
return_intermediates=True,
cuda_device=cuda_device,
mode='REINVERSION')
overwatch.info(f"[Finish] ==>> Re-Inverting source image", ctx_level=1)
mask_struct = editor.get_aggregate_mask()
flexiedit.set_struct_mask(mask_struct)
mask_save_dir = os.path.join(save_path, "REINVERSION")
reinv_flexiedit_editor = FE_MutualSelfAttentionControl(masa_step_retarget_branch, masa_layer, inject_uncond=inject_uncond, inject_cond=inject_cond)
regiter_attention_editor_diffusers(flexiedit, reinv_flexiedit_editor)
npi_2nd=False
npi_interp_2nd=0
#NOTE: FlexiEdit Re-Target Branch
overwatch.info(f"5th Stage 🔥 ==>> Starting re-sampling process using FlexiEdit only")
output_reinversion = flexiedit(prompts,
latents=reinv_start_code.expand(len(prompts), -1, -1, -1), # start_code=[2, 4, 64, 64]
num_inference_steps=reinversion_steps,
guidance_scale=[1, scale],
neg_prompt=source_prompt if npi_2nd else None,
prox=prox,
prox_step=prox_step,
ref_intermediate_latents=None, # latents_list
quantile=quantile,
npi_interp=npi_interp_2nd,
npi_step=npi_step,
mode='REINVERSION',
latent_filter=[inv_latents_list[reinversion_steps].expand(len(prompts), -1, -1, -1), None, None, None],
params={"n": n,
"alpha": alpha,
"reinversion_step": reinversion_steps,
"d_s": d_s,
"d_t": d_t,
"refined_step": refined_step,
"user_mask": [bbx_start_point, bbx_end_point],
"auto_mask": edw_mask,
"callback": flexiedit.get_adain_bg_callback(config1.adain_start_step, config1.adain_end_step),
"cuda_device": cuda_device,
})
#NOTE: For advanced background fidelity, we utilize unified self-attention control in FlexiEdit
config2 = Box()
config2.latent_blend_type = "bg"
config2.latent_blend_step = 0
config2.adain_start_step = reinversion_steps//2
config2.adain_end_step = reinversion_steps
config2.conv_injection_t = 40
config2.app_start_step = 4
config2.app_end_step = reinversion_steps
config2.app_start_layer = 10
config2.struct_start_step = 0
config2.struct_end_step = 25
config2.struct_start_layer = 0
config2.contrast_strength = 1.67 # not used
config2.injection_step = 1
config2.appearance_invert_flag = True
config2.struct_invert_flag = True
config2.mode = 'both'
# set prompt
# prompts = [appearance_prompt, target_prompt, struct_prompt]
negative_prompt = "ugly, blurry, black, low res, unrealistic"
prompt = [source_prompt, target_prompt, target_prompt]
appearance_neg_prompt = source_prompt if config2.appearance_invert_flag else negative_prompt
struct_neg_prompt = target_prompt if config2.struct_invert_flag else negative_prompt
neg_prompts = [appearance_neg_prompt, struct_neg_prompt, struct_neg_prompt]
# set scale
text_scale, guidance_scale = 7.5, 7.5
app_scale = inv_scale if config2.appearance_invert_flag else text_scale
struct_scale = inv_scale if config2.struct_invert_flag else text_scale
scale = [app_scale, guidance_scale, struct_scale]
# latent concat
# new_start_code = torch.cat([inv_start_code, reinv_start_code, reinv_start_code], dim=0)
new_start_code = torch.cat([inv_latents_list[reinversion_steps], reinv_start_code, reinv_start_code], dim=0)
# new_start_code = torch.cat([inv_latents_list[len(inv_latents_list) - reinversion_steps], reinv_start_code, reinv_start_code], dim=0)
editor = FE_UnifiedSelfAttentionControl(appearance_start_step=config2.app_start_step,
appearance_end_step=config2.app_end_step,
appearance_start_layer=config2.app_start_layer,
struct_start_step=config2.struct_start_step,
struct_end_step=config2.struct_end_step,
struct_start_layer=config2.struct_start_layer,
mix_type=config2.mode,
contrast_strength=config2.contrast_strength,
injection_step=config2.injection_step)
regiter_attention_editor_diffusers(flexiedit, editor)
# hijack the resblock module
# injection_step = injection_step if mode == "app" else 1
conv_injection_timesteps = scheduler.timesteps[:config2.conv_injection_t:config2.injection_step] if config2.conv_injection_t >= 0 else []
register_conv_control_efficient(flexiedit, conv_injection_timesteps)
#NOTE: New version of FlexiEdit: Re-Target Branch
overwatch.info(f"6th Stage 🔥 ==>> New version of FlexiEdit!!")
image_results = flexiedit(prompts,
latents=new_start_code,
num_inference_steps=reinversion_steps,
mode="new_FlexiEdit",
new_params={
"scale": scale,
"neg_prompts": neg_prompts,
"ref_intermediate_latents_app": inv_latents_list[:reinversion_steps+1] if config2.appearance_invert_flag else None,
"ref_intermediate_latents_struct": reinv_latents_list if config2.struct_invert_flag else None,
"callback": flexiedit.get_adain_bg_callback(config2.adain_start_step, config2.adain_end_step),
"latent_blend_type": config2.latent_blend_type,
"latent_blend_step": config2.latent_blend_step,
"cuda_device": cuda_device
}
)
out_image_mid = tensor2numpy(torch.cat([source_image * 0.5 + 0.5, output_mid], dim=0))
out_image_reinversion = tensor2numpy(torch.cat([source_image * 0.5 + 0.5, output_reinversion], dim=0))
# swap ordering
grid1 = image_results[0].unsqueeze(dim=0)
grid2 = image_results[1].unsqueeze(dim=0)
grid3 = image_results[2].unsqueeze(dim=0)
new_image_results = torch.cat([grid3, grid2], dim=0)
out_image_new = tensor2numpy(torch.cat([source_image * 0.5 + 0.5, new_image_results], dim=0))
#NOTE: automatic mask
if bbx_start_point != None and bbx_end_point != None:
out_image_mask = draw_mask(out_image_mid, bbx_start_point, bbx_end_point)
else:
# draw mask in out_image_mask
grid = make_grid(edw_mask)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0)
_, c, h, w = source_image.shape
# upscale ndarr (64,64,3) to the size of source_image (512,512,3)
upscale_ndarr = Image.fromarray(ndarr.cpu().numpy().astype(np.uint8)).resize((w, h))
red_mask = Image.new("RGBA", (w, h), (255, 0, 0, 100))
origin_image = Image.fromarray(out_image_mid[:, 0:h, :3].astype(np.uint8))
masked_image = Image.composite(origin_image, upscale_ndarr, red_mask)
out_image_mid[:, 0:h, :3] = np.array(masked_image)
out_image_mask = out_image_mid
# for latent
latent_512 = latent2image(flexiedit.vae, inv_start_code)[0]
latent_mid_512 = latent2image(flexiedit.vae, latent_mask_h)[0]
latent_reinvserion_512 = latent2image(flexiedit.vae, reinv_start_code)[0]
image_instruct_00 = txt_draw(f"Model", v="center", h="center", target_size=[512, 100])
image_instruct_01 = txt_draw(f"DDIM Latent", v="center", h="center", target_size=[512, 100])
image_instruct_02 = txt_draw(f"Original Image \n (First row: +edited mask)", v="center", h="center", target_size=[512, 100])
image_instruct_03 = txt_draw(f"Reconstruction Image", v="center", h="center", target_size=[512, 100])
image_instruct_04 = txt_draw(f"Edited Image", v="center", h="center", target_size=[512, 100])
if bbx_start_point == None and bbx_end_point == None:
image_instruct_1 = txt_draw(f"FlexiEdit: Target branch\n (auto mask version!!) \n\n Edited image => I_mid \n\n "
f"source_prompt: {source_prompt} \n target_prompt: {target_prompt} \n "
f"edited_words: {str(edited_words)} \n edw_threshold: {edw_threshold} \n"
f"alpha: {alpha} \n bbx_start/bbx_end_point: {bbx_start_point}, {bbx_end_point} \n "
f"adain_start/end_step: {config1.adain_start_step}, {config1.adain_end_step}" )
else:
image_instruct_1 = txt_draw(f"FlexiEdit: Target branch\n (user-defied mask version!!) \n\n Edited image => I_mid \n\n "
f"source_prompt: {source_prompt} \n target_prompt: {target_prompt} \n "
f"alpha: {alpha} \n bbx_start/bbx_end_point: {bbx_start_point}, {bbx_end_point} \n "
f"adain_start/end_step: {config1.adain_start_step}, {config1.adain_end_step} \n ")
image_instruct_2 = txt_draw(f"FlexiEdit: Retarget branch\n (after Re-inversion)\n\n Edited image => I_tar \n\nreinversion timestep: {reinversion_steps} \nmasastep_original: {masa_step_original} \nmasastep_target_branch: {masa_step_target_branch} \nmasastep_retarget_branch: {masa_step_retarget_branch} \nrefined step: {refined_step}")
image_instruct_3 = txt_draw(f"FlexiEdit: Retarget branch\n(Advanced version!!) \n\n Edited image => I_tar_2 \n\nlatent_blend_step: {config2.latent_blend_step} \nadain_start_step: {config2.adain_start_step}, adain_end_step: {config2.adain_end_step} \napp_start_step: {config2.app_start_step}, app_end_step: {config2.app_end_step} \napp_struct_start_step: {config2.struct_start_step}, app_struct_end_step: {config2.struct_end_step}")
image_instruct_null = txt_draw(f"")
# out_image_instruct = np.concatenate([image_instruct_1, image_instruct_2, image_instruct_3], axis=1)
low_0 = np.concatenate([image_instruct_00, image_instruct_01, image_instruct_02, image_instruct_03, image_instruct_04], axis=1)
low_1 = np.concatenate([image_instruct_1, latent_mid_512, out_image_mask], axis=1)
low_2 = np.concatenate([image_instruct_2, latent_reinvserion_512, out_image_reinversion], axis=1)
low_3 = np.concatenate([image_instruct_3, latent_reinvserion_512, out_image_new], axis=1)
total = np.concatenate([low_0, low_1, low_2, low_3], axis=0)
new_sample_count = sample_count + 1
filename = f'{save_path}/{new_sample_count}_reinv_{reinversion_steps}_points_{str(bbx_start_point)}_{str(bbx_end_point)}.jpg' # _ref_{ref_token_idx}_cur_{cur_token_idx}
Image.fromarray(total).save(filename)
config = Box()
config._global_setting = config0
config.flexiedit = config1
config.flexiedit_advanced = config2
os.makedirs(save_path, exist_ok=True)
with open(f"{save_path}/config.yaml", "w") as file:
yaml.dump(config.to_dict(), file, default_flow_style=False)
print("Syntheiszed images are saved in", os.path.join(out_dir, filename))
print("Real image | Reconstructed image | Edited image")
if __name__ == "__main__":
fire.Fire(main)