-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlinear_multihead_attention.py
495 lines (437 loc) · 24.9 KB
/
linear_multihead_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
"""
Reproduce of Linear Multihead Attention class introduced in Linformer paper (https://arxiv.org/abs/2006.04768)
Copy-paste from torch.nn.MultiheadAttention and F.multi_head_attention_forward with modifications:
* E and F projection from seq_len to k
* layerwise parameters sharing
"""
import warnings
import torch
from torch import nn
from torch.nn import Linear
from torch.nn.parameter import Parameter
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
from torch.nn.functional import linear, softmax, dropout
def linear_multi_head_attention_forward(query, # type: Tensor
key, # type: Tensor
value, # type: Tensor
embed_dim_to_check, # type: int
num_heads, # type: int
in_proj_weight, # type: Tensor
in_proj_bias, # type: Tensor
bias_k, # type: Optional[Tensor]
bias_v, # type: Optional[Tensor]
bias_e, # type: Optional[Tensor]
bias_f, # type: Optional[Tensor]
add_zero_attn, # type: bool
dropout_p, # type: float
out_proj_weight, # type: Tensor
out_proj_bias, # type: Tensor
training=True, # type: bool
key_padding_mask=None, # type: Optional[Tensor]
need_weights=True, # type: bool
attn_mask=None, # type: Optional[Tensor]
use_separate_proj_weight=False, # type: bool
q_proj_weight=None, # type: Optional[Tensor]
k_proj_weight=None, # type: Optional[Tensor]
v_proj_weight=None, # type: Optional[Tensor]
e_proj_weight=None, # type: Optional[Tensor]
f_proj_weight=None, # type: Optional[Tensor]
static_k=None, # type: Optional[Tensor]
static_v=None # type: Optional[Tensor]
):
# type: (...) -> Tuple[Tensor, Optional[Tensor]]
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
embed_dim_to_check: total dimension of the model.
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
bias_e, bias_f: bias of the two linear projection to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``True``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in different forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
e_proj_weight, f_proj_weight: linear projection weight.
static_k, static_v: static key and value used for attention operators.
Shape:
Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
will be unchanged. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
Outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
# if not torch.jit.is_scripting():
# tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, bias_e, bias_f,
# out_proj_weight, out_proj_bias)
# if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
# return handle_torch_function(
# multi_head_attention_forward, tens_ops, query, key, value,
# embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias,
# bias_k, bias_v, bias_e, bias_f, add_zero_attn, dropout_p, out_proj_weight,
# out_proj_bias, training=training, key_padding_mask=key_padding_mask,
# need_weights=need_weights, attn_mask=attn_mask,
# use_separate_proj_weight=use_separate_proj_weight,
# q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight,
# v_proj_weight=v_proj_weight, e_proj_weight=q_proj_weight,
# f_proj_weight=k_proj_weight, static_k=static_k, static_v=static_v)
tgt_len, bsz, embed_dim = query.size()
seq_len, proj_k = e_proj_weight.size()
assert embed_dim == embed_dim_to_check
# allow MHA to have different sizes for the feature dimension
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
scaling = float(head_dim) ** -0.5
if not use_separate_proj_weight:
if torch.equal(query, key) and torch.equal(key, value):
# self-attention
q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
elif torch.equal(key, value):
# encoder-decoder attention
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = linear(query, _w, _b)
if key is None:
assert value is None
k = None
v = None
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
k, v = linear(key, _w, _b).chunk(2, dim=-1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = linear(query, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = embed_dim * 2
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = linear(key, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim * 2
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
v = linear(value, _w, _b)
else:
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
len1, len2 = q_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == query.size(-1)
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
len1, len2 = k_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == key.size(-1)
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
len1, len2 = v_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == value.size(-1)
if in_proj_bias is not None:
q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
else:
q = linear(query, q_proj_weight_non_opt, in_proj_bias)
k = linear(key, k_proj_weight_non_opt, in_proj_bias)
v = linear(value, v_proj_weight_non_opt, in_proj_bias)
q = q * scaling
if attn_mask is not None:
assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \
attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \
'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype)
if attn_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
attn_mask = attn_mask.to(torch.bool)
if attn_mask.dim() == 2:
attn_mask = attn_mask.unsqueeze(0)
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
raise RuntimeError('The size of the 2D attn_mask is not correct.')
elif attn_mask.dim() == 3:
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
raise RuntimeError('The size of the 3D attn_mask is not correct.')
else:
raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
# attn_mask's dim is 3 now.
# convert ByteTensor key_padding_mask to bool
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
key_padding_mask = key_padding_mask.to(torch.bool)
if bias_k is not None and bias_v is not None:
if static_k is None and static_v is None:
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
else:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
else:
assert bias_k is None
assert bias_v is None
##======= linformer =========##
k = k.transpose(0, 1).transpose(1, 2)
k = linear(k, e_proj_weight, bias_e)
v = v.transpose(0, 1).transpose(1, 2)
v = linear(v, f_proj_weight, bias_f)
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is not None:
assert static_k.size(0) == bsz * num_heads
assert static_k.size(2) == head_dim
k = static_k
if static_v is not None:
assert static_v.size(0) == bsz * num_heads
assert static_v.size(2) == head_dim
v = static_v
src_len = k.size(1)
# key_padding_mask projection ???
# if key_padding_mask is not None:
# key_padding_mask = linear(key_padding_mask.float(), e_proj_weight).to(torch.bool)
# assert key_padding_mask.size(0) == bsz
# assert key_padding_mask.size(1) == src_len
if add_zero_attn:
src_len += 1
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_output_weights.masked_fill_(attn_mask, float('-inf'))
else:
attn_output_weights += attn_mask
# if key_padding_mask is not None:
# attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
# attn_output_weights = attn_output_weights.masked_fill(
# key_padding_mask.unsqueeze(1).unsqueeze(2),
# float('-inf'),
# )
# attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
attn_output_weights = softmax(
attn_output_weights, dim=-1)
attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training)
attn_output = torch.bmm(attn_output_weights, v)
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / num_heads
else:
return attn_output, None
class LinearMultiheadAttention(nn.Module):
r"""Allows the model to jointly attend to information
from different representation subspaces.
See reference: Attention Is All You Need
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
Args:
embed_dim: total dimension of the model.
num_heads: parallel attention heads.
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
bias: add bias as module parameter. Default: True.
add_bias_kv: add bias to the key and value sequences at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
kdim: total number of features in key. Default: None.
vdim: total number of features in key. Default: None.
seq_len: the sequence length. Default: 100.
proj_k: the projected dimention `k` of key and value. Default: 128.
param_sharing: parameter sharing mode: layerwise, none. headwise is not implemented. Default: none.
Note: if kdim and vdim are None, they will be set to embed_dim such that
query, key, and value have the same number of features.
Examples::
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
__annotations__ = {
'bias_k': torch._jit_internal.Optional[torch.Tensor],
'bias_v': torch._jit_internal.Optional[torch.Tensor],
}
__constants__ = ['q_proj_weight', 'k_proj_weight', 'v_proj_weight', 'in_proj_weight', 'e_proj_weight', 'f_proj_weight']
def __init__(self, embed_dim, num_heads, dropout=0.1,
bias=True, add_bias_kv=False, add_zero_attn=False,
kdim=None, vdim=None, seq_len=512, proj_k=128, param_sharing='none'):
super(LinearMultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if self._qkv_same_embed_dim is False:
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
self.register_parameter('in_proj_weight', None)
else:
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
self.register_parameter('q_proj_weight', None)
self.register_parameter('k_proj_weight', None)
self.register_parameter('v_proj_weight', None)
self.e_proj_weight = Parameter(torch.Tensor(proj_k, seq_len))
if param_sharing == "layerwise":
self.f_proj_weight = self.e_proj_weight
else:
self.f_proj_weight = Parameter(torch.Tensor(proj_k, seq_len))
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.bias_e = Parameter(torch.empty(1, 1, proj_k))
self.bias_f = Parameter(torch.empty(1, 1, proj_k))
self.add_zero_attn = add_zero_attn
self._reset_parameters()
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
xavier_uniform_(self.e_proj_weight)
xavier_uniform_(self.f_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
if self.bias_e is not None:
xavier_normal_(self.bias_e)
if self.bias_f is not None:
xavier_normal_(self.bias_f)
def __setstate__(self, state):
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
if '_qkv_same_embed_dim' not in state:
state['_qkv_same_embed_dim'] = True
super(LinearMultiheadAttention, self).__setstate__(state)
def forward(self, query, key, value, key_padding_mask=None,
need_weights=True, attn_mask=None):
# type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]]
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. This is an additive mask
(i.e. the values will be added to the attention layer). A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
Shape:
- Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)`, ByteTensor, where N is the batch size, S is the source sequence length.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length.
- Outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
if not self._qkv_same_embed_dim:
return linear_multi_head_attention_forward(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.bias_e, self.bias_f, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight, e_proj_weight=self.e_proj_weight,
f_proj_weight=self.f_proj_weight)
else:
return linear_multi_head_attention_forward(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.bias_e, self.bias_f, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, e_proj_weight=self.e_proj_weight,
f_proj_weight=self.f_proj_weight)