-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.lua
410 lines (361 loc) · 18.3 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
require 'torch'
require 'nn'
require 'nngraph'
-- exotic things
require 'loadcaffe'
-- local imports
local utils = require 'misc.utils'
require 'misc.DataLoader'
require 'misc.LanguageModel'
local net_utils = require 'misc.net_utils'
require 'misc.optim_updates'
-------------------------------------------------------------------------------
-- Input arguments and options
-------------------------------------------------------------------------------
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train an Image Captioning model')
cmd:text()
cmd:text('Options')
-- Data input settings
cmd:option('-input_h5','script/prepro_combined/prepro2/combined_captions.h5','path to the h5file containing the preprocessed dataset')
cmd:option('-input_json','script/prepro_combined/prepro2/combined_captions.json','path to the json file containing additional info and vocab')
cmd:option('-cnn_proto','model/VGG_ILSVRC_16_layers_deploy.prototxt','path to CNN prototxt file in Caffe format. Note this MUST be a VGGNet-16 right now.')
cmd:option('-cnn_model','model/VGG_ILSVRC_16_layers.caffemodel','path to CNN model file containing the weights, Caffe format. Note this MUST be a VGGNet-16 right now.')
cmd:option('-aspect_net', {'./model/CriticNet_comp.t7',
'./model/CriticNet_color.t7',
'./model/CriticNet_subject.t7'},
'path to a model checkpoint to initialize model weights from, including a shared cnn. Empty = don\'t')
cmd:option('-dec_model', './model/fintuneCOCO_dec_10390.t7' )
-- Model settings
cmd:option('-rnn_size',768,'size of the rnn in number of hidden nodes in each layer')
cmd:option('-input_encoding_size',768,'the encoding size of each token in the vocabulary, and the image.')
-- Encoder Sampling options
cmd:option('-sample_max', 1, '1 = sample argmax words. 0 = sample from distributions.')
cmd:option('-beam_size', 1, 'used when sample_max = 1, indicates number of beams in beam search. Usually 2 or 3 works well. More is not better. Set this to 1 for faster runtime but a bit worse performance.')
cmd:option('-temperature', 1.0, 'temperature when sampling from distributions (i.e. when sample_max = 0). Lower = "safer" predictions.')
-- Optimization: General
cmd:option('-max_iters', 150000, 'max number of iterations to run for (-1 = run forever)')
cmd:option('-batch_size',10,'what is the batch size in number of images per batch? (there will be x seq_per_img sentences)')
cmd:option('-grad_clip',0.1,'clip gradients at this value (note should be lower than usual 5 because we normalize grads by both batch and seq_length)')
cmd:option('-drop_prob_lm', 0.5, 'strength of dropout in the Language Model RNN')
cmd:option('-finetune_cnn_after', -1, 'After what iteration do we start finetuning the CNN? (-1 = disable; never finetune, 0 = finetune from start)')
cmd:option('-seq_per_img',5,'number of captions to sample for each image during training. Done for efficiency since CNN forward pass is expensive. E.g. coco has 5 sents/image')
-- Optimization: for the Language Model
cmd:option('-optim','adam','what update to use? rmsprop|sgd|sgdmom|adagrad|adam')
cmd:option('-learning_rate',4e-4,'learning rate')
cmd:option('-learning_rate_decay_start', 0, 'at what iteration to start decaying learning rate? (-1 = dont)')
cmd:option('-learning_rate_decay_every', 25000, 'every how many iterations thereafter to drop LR by half?')
cmd:option('-optim_alpha',0.8,'alpha for adagrad/rmsprop/momentum/adam')
cmd:option('-optim_beta',0.999,'beta used for adam')
cmd:option('-optim_epsilon',1e-8,'epsilon that goes into denominator for smoothing')
-- Optimization: for the CNN
cmd:option('-cnn_optim','adam','optimization to use for CNN')
cmd:option('-cnn_optim_alpha',0.8,'alpha for momentum of CNN')
cmd:option('-cnn_optim_beta',0.999,'alpha for momentum of CNN')
cmd:option('-cnn_learning_rate',1e-5,'learning rate for the CNN')
cmd:option('-cnn_weight_decay', 0, 'L2 weight decay just for the CNN')
-- Evaluation/Checkpointing
cmd:option('-val_images_use', 3200, 'how many images to use when periodically evaluating the validation loss? (-1 = all)')
cmd:option('-save_checkpoint_every', 7500, 'how often to save a model checkpoint?')
cmd:option('-checkpoint_path', './checkpoint', 'folder to save checkpoints into (empty = this folder)')
cmd:option('-language_eval', 0, 'Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires coco-caption code from Github.')
cmd:option('-losses_log_every', 25, 'How often do we snapshot losses, for inclusion in the progress dump? (0 = disable)')
-- misc
cmd:option('-backend', 'cudnn', 'nn|cudnn')
cmd:option('-id', '', 'an id identifying this run/job. used in cross-val and appended when writing progress files')
cmd:option('-seed', 123, 'random number generator seed to use')
cmd:option('-gpuid', 0, 'which gpu to use. -1 = use CPU')
cmd:text()
-------------------------------------------------------------------------------
-- Basic Torch initializations
-------------------------------------------------------------------------------
local opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.FloatTensor') -- for CPU
if opt.gpuid >= 0 then
require 'cutorch'
require 'cunn'
if opt.backend == 'cudnn' then require 'cudnn' end
cutorch.manualSeed(opt.seed)
cutorch.setDevice(opt.gpuid + 1) -- note +1 because lua is 1-indexed
end
-------------------------------------------------------------------------------
-- Create the Data Loader instance
-------------------------------------------------------------------------------
local loader = DataLoader{h5_file = opt.input_h5, json_file = opt.input_json}
-------------------------------------------------------------------------------
-- Initialize the networks
-------------------------------------------------------------------------------
local vocab = nil
local encoder = {}
encoder.aspect = nn.ConcatTable()
-- load aspect net from file
print('*******************************************************')
assert( #opt.aspect_net > 0, 'aspect net should be loaded...')
for i,model in ipairs(opt.aspect_net) do
local loaded_checkpoint = torch.load(model)
if encoder.cnn == nil then
encoder.cnn = loaded_checkpoint.protos.cnn
print('Load CNN model....')
end
if vocab == nil then
vocab = loaded_checkpoint.vocab
print('Load dictionary....')
end
loaded_checkpoint.protos.lm:setLMtype('encoder')
print (string.format('Load %d encoder: %s', i, model))
encoder.aspect:add(loaded_checkpoint.protos.lm)
end
encoder.expander = nn.FeatExpander(opt.seq_per_img) -- not in checkpoints, create manually
print('*******************************************************')
print('Create Decoder netowrk....')
local lmOpt = {}
lmOpt.vocab_size = loader:getVocabSize()
lmOpt.input_encoding_size = opt.input_encoding_size
lmOpt.rnn_size = opt.rnn_size
lmOpt.num_layers = 1
lmOpt.dropout = opt.drop_prob_lm
lmOpt.seq_length = loader:getSeqLength()
lmOpt.batch_size = opt.batch_size * opt.seq_per_img
lmOpt.context = true
lmOpt.LMtype = 'decoder'
lmOpt.num_encoders = #(opt.aspect_net)
print (string.format('Number of encoders: %d', lmOpt.num_encoders))
local decoder = {}
decoder.lm = nn.LanguageModel(lmOpt)
decoder.crit = nn.LanguageModelCriterion()
if opt.dec_model ~= '' then
local loaded_decoder = torch.load(opt.dec_model)
print (string.format('Load decoder: %s', opt.dec_model))
decoder.lm.core = loaded_decoder.protos.lm.core:clone()
decoder.lm.lookup_table = loaded_decoder.protos.lm.lookup_table:clone()
end
loaded_decoder = nil
loaded_checkpoint = nil
local lm_modules = decoder.lm:getModulesList()
for k,v in pairs(lm_modules) do net_utils.unsanitize_gradients(v) end -- add gradient term to model (turn on the gradient)
if opt.gpuid >= 0 then
for k,v in pairs(encoder) do v:cuda() end
for k,v in pairs(decoder) do v:cuda() end
end
local params, grad_params = decoder.lm:getParameters()
print('total number of parameters in Decoder LM: ', params:nElement())
assert(params:nElement() == grad_params:nElement())
-- construct thin module clones that share parameters with the actual
-- modules. These thin module will have no intermediates and will be used
-- for checkpointing to write significantly smaller checkpoint files
local thin_decoder = decoder.lm:clone()
thin_decoder.core:share(decoder.lm.core, 'weight', 'bias') -- TODO: we are assuming that LM has specific members! figure out clean way to get rid of, not modular.
thin_decoder.lookup_table:share(decoder.lm.lookup_table, 'weight', 'bias')
thin_decoder.attention:share(decoder.lm.attention, 'weight', 'bias')
decoder.lm:createClones()
collectgarbage() -- "yeah, sure why not
-------------------------------------------------------------------------------
-- Validation evaluation
-------------------------------------------------------------------------------
local function eval_split(split, evalopt)
local verbose = utils.getopt(evalopt, 'verbose', true)
local val_images_use = utils.getopt(evalopt, 'val_images_use', true)
encoder.cnn:evaluate()
encoder.aspect:evaluate()
decoder.lm:evaluate()
loader:resetIterator(split) -- rewind iteator back to first datapoint in the split
local n = 0
local loss_sum = 0
local loss_evals = 0
local predictions = {}
local vocab = loader:getVocab()
while true do
-- fetch a batch of data
local data = loader:getBatch{batch_size = opt.batch_size, split = split, seq_per_img = opt.seq_per_img}
data.images = net_utils.prepro(data.images, false, opt.gpuid >= 0) -- preprocess in place, and don't augment
n = n + data.images:size(1)
-- forward the aspect nets to get hidden annotations
local feats = encoder.cnn:forward(data.images)
local expanded_feats = encoder.expander:forward(feats)
local sample_opts = { sample_max = opt.sample_max, beam_size = opt.beam_size, temperature = opt.temperature }
local all_states = {}
encoder.aspect:apply(function(module)
if torch.typename(module) == 'nn.LanguageModel' then
local seq, seqLogprobs, states = module:sample(expanded_feats, sample_opts)
table.insert(all_states, states)
end
end)
local h_concat = torch.cat({all_states[1], all_states[2], all_states[3]}, 1)
local h_transpose = h_concat:permute(2,1,3)
-- forward the generator to get loss
local logprobs = decoder.lm:forward{expanded_feats, data.labels, h_transpose}
local loss = decoder.crit:forward(logprobs, {data.labels, data.scores})
loss_sum = loss_sum + loss
loss_evals = loss_evals + 1
-- forward the generator to also get generated samples for each image
local seq = decoder.lm:sample(expanded_feats, opt, h_transpose)
local sents = net_utils.decode_sequence(vocab, seq)
for k=1,#sents,5 do -- due to the architecture of attention model, we duplicate each image for 5 times
local idx = (k-1)/5 + 1
local entry = {image_id = data.infos[idx].id, caption = sents[k]}
table.insert(predictions, entry)
if verbose then
print(string.format('image %s: %s', entry.image_id, entry.caption))
end
end
-- if we wrapped around the split or used up val imgs budget then bail
local ix0 = data.bounds.it_pos_now
local ix1 = math.min(data.bounds.it_max, val_images_use)
if verbose then
print(string.format('evaluating validation performance... %d/%d (%f)', ix0-1, ix1, loss))
end
if loss_evals % 10 == 0 then collectgarbage() end
if data.bounds.wrapped then break end -- the split ran out of data, lets break out
if n >= val_images_use then break end -- we've used enough images
end
-- call MSCOCO evaluation, not useful in our work...
--[[
local lang_stats
if opt.language_eval == 1 then
lang_stats = net_utils.language_eval(predictions, opt.id)
end
]]
return loss_sum/loss_evals, predictions, lang_stats
end
-------------------------------------------------------------------------------
-- Loss function
-------------------------------------------------------------------------------
local function lossFun()
encoder.cnn:evaluate()
encoder.aspect:evaluate()
decoder.lm:training()
grad_params:zero()
-----------------------------------------------------------------------------
-- Forward pass
-----------------------------------------------------------------------------
-- get batch of data
local data = loader:getBatch{batch_size = opt.batch_size, split = 'train', seq_per_img = opt.seq_per_img}
data.images = net_utils.prepro(data.images, true, opt.gpuid >= 0) -- preprocess in place, do data augmentation
-- data.images: Nx3x224x224, N: batch size
-- data.seq: LxM where L is sequence length upper bound, and M = N*seq_per_img
-- forward the ConvNet on images (most work happens here)
local feats = encoder.cnn:forward(data.images)
local expanded_feats = encoder.expander:forward(feats)
local sample_opts = { sample_max = opt.sample_max, beam_size = opt.beam_size, temperature = opt.temperature }
local all_states = {}
encoder.aspect:apply(function(module)
if torch.typename(module) == 'nn.LanguageModel' then
local seq, seqLogprobs, states = module:sample(expanded_feats, sample_opts)
table.insert(all_states, states)
end
end)
local h_concat = torch.cat({all_states[1], all_states[2], all_states[3]}, 1) --num_aspect X seq_length X rnn_size
local h_transpose = h_concat:permute(2,1,3) --seq_length X num_aspect X rnn_size
local logprobs = decoder.lm:forward{expanded_feats, data.labels, h_transpose}
-- forward the language model criterion
local loss = decoder.crit:forward( logprobs, data.labels )
-----------------------------------------------------------------------------
-- Backward pass
-----------------------------------------------------------------------------
-- backprop criterion
local dlogprobs = decoder.crit:backward(logprobs, data.labels)
-- backprop language model
local dexpanded_feats, ddummy = unpack(decoder.lm:backward({expanded_feats, data.labels}, dlogprobs))
-- clip gradients
-- print(string.format('claming %f%% of gradients', 100*torch.mean(torch.gt(torch.abs(grad_params), opt.grad_clip))))
grad_params:clamp(-opt.grad_clip, opt.grad_clip)
-- and lets get out!
local losses = { total_loss = loss }
return losses
end
-------------------------------------------------------------------------------
-- Main loop
-------------------------------------------------------------------------------
local iter = 0
local loss0
local optim_state = {}
local cnn_optim_state = {}
local loss_history = {}
local val_lang_stats_history = {}
local val_loss_history = {}
local best_score
while true do
-- eval loss/gradient
local losses = lossFun()
if iter % opt.losses_log_every == 0 then loss_history[iter] = losses.total_loss end
print(string.format('iter %d: %f', iter, losses.total_loss))
-- save checkpoint once in a while (or on final iteration)
if (iter > 0 and iter % opt.save_checkpoint_every == 0 or iter == opt.max_iters) then
-- evaluate the validation performance
local val_loss, val_predictions, lang_stats = eval_split('val', {val_images_use = opt.val_images_use})
print('validation loss: ', val_loss)
val_loss_history[iter] = val_loss
if lang_stats then
val_lang_stats_history[iter] = lang_stats
end
local checkpoint_path = path.join(opt.checkpoint_path, 'model_id' .. '_' .. iter ..'_'.. opt.id)
-- write a (thin) json report
local checkpoint = {}
checkpoint.opt = opt
checkpoint.iter = iter
checkpoint.loss_history = loss_history
checkpoint.val_loss_history = val_loss_history
checkpoint.val_predictions = val_predictions -- save these too for CIDEr/METEOR/etc eval
checkpoint.val_lang_stats_history = val_lang_stats_history
utils.write_json(checkpoint_path .. '.json', checkpoint)
print('wrote json checkpoint to ' .. checkpoint_path .. '.json')
-- write model and vocab to .t7 file
checkpoint.protos = thin_decoder
checkpoint.vocab = loader:getVocab()
torch.save(checkpoint_path .. '.t7', checkpoint)
print('wrote checkpoint to ' .. checkpoint_path .. '.t7')
end
-- decay the learning rate for both LM and CNN
local learning_rate = opt.learning_rate
local cnn_learning_rate = opt.cnn_learning_rate
if iter >= opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0 then
local frac = (iter - opt.learning_rate_decay_start) / opt.learning_rate_decay_every
local decay_factor = math.pow(0.5, math.floor(frac) )
learning_rate = learning_rate * decay_factor -- set the decayed rate
if (iter % opt.save_checkpoint_every == 0 or iter == opt.max_iters) then
print ('frac', math.floor(frac) )
print ('decay_factor', decay_factor )
print ('Now learning_rate is ', learning_rate)
end
cnn_learning_rate = cnn_learning_rate * decay_factor
end
-- perform a parameter update
if opt.optim == 'rmsprop' then
rmsprop(params, grad_params, learning_rate, opt.optim_alpha, opt.optim_epsilon, optim_state)
elseif opt.optim == 'adagrad' then
adagrad(params, grad_params, learning_rate, opt.optim_epsilon, optim_state)
elseif opt.optim == 'sgd' then
sgd(params, grad_params, opt.learning_rate)
elseif opt.optim == 'sgdm' then
sgdm(params, grad_params, learning_rate, opt.optim_alpha, optim_state)
elseif opt.optim == 'sgdmom' then
sgdmom(params, grad_params, learning_rate, opt.optim_alpha, optim_state)
elseif opt.optim == 'adam' then
adam(params, grad_params, learning_rate, opt.optim_alpha, opt.optim_beta, opt.optim_epsilon, optim_state)
else
error('bad option opt.optim')
end
-- do a cnn update (if finetuning, and if rnn above us is not warming up right now)
if opt.finetune_cnn_after >= 0 and iter >= opt.finetune_cnn_after then
if opt.cnn_optim == 'sgd' then
sgd(cnn_params, cnn_grad_params, cnn_learning_rate)
elseif opt.cnn_optim == 'sgdm' then
sgdm(cnn_params, cnn_grad_params, cnn_learning_rate, opt.cnn_optim_alpha, cnn_optim_state)
elseif opt.cnn_optim == 'adam' then
adam(cnn_params, cnn_grad_params, cnn_learning_rate, opt.cnn_optim_alpha, opt.cnn_optim_beta, opt.optim_epsilon, cnn_optim_state)
else
error('bad option for opt.cnn_optim')
end
end
-- stopping criterions
iter = iter + 1
if iter % 10 == 0 then collectgarbage() end -- good idea to do this once in a while, i think
if loss0 == nil then loss0 = losses.total_loss end
if losses.total_loss > loss0 * 20 then
print('loss seems to be exploding, quitting.')
break
end
if opt.max_iters > 0 and iter >= opt.max_iters then break end -- stopping criterion
end