From ba0591a92bd3ef1ac0d7d0f4ececebff1ecafbba Mon Sep 17 00:00:00 2001 From: Kye Date: Sat, 30 Sep 2023 14:12:26 -0400 Subject: [PATCH] queen bee --- .github/workflows/unit-test.yml | 4 +-- swarms_torch/__init__.py | 1 + swarms_torch/particle_swarm.py | 9 +++++-- tests/ant_colony.py | 47 +++++++++++++++++++++++++++++++++ tests/particle_swarm.py | 36 +++++++++++++++++++++++++ tests/queen_bee.py | 42 +++++++++++++++++++++++++++++ 6 files changed, 135 insertions(+), 4 deletions(-) create mode 100644 tests/ant_colony.py create mode 100644 tests/particle_swarm.py create mode 100644 tests/queen_bee.py diff --git a/.github/workflows/unit-test.yml b/.github/workflows/unit-test.yml index cf4f1be..dd20a64 100644 --- a/.github/workflows/unit-test.yml +++ b/.github/workflows/unit-test.yml @@ -24,7 +24,7 @@ jobs: run: pip install -r requirements.txt - name: Run Python unit tests - run: python3 -m unittest tests/zeta + run: python3 -m unittest tests/ - name: Verify that the Docker image for the action builds run: docker build . --file Dockerfile @@ -42,4 +42,4 @@ jobs: input-two: false - name: Verify integration test results - run: python3 -m unittest unittesting/zeta + run: python3 -m unittest tests/ diff --git a/swarms_torch/__init__.py b/swarms_torch/__init__.py index 0a79a71..856b88a 100644 --- a/swarms_torch/__init__.py +++ b/swarms_torch/__init__.py @@ -1,2 +1,3 @@ from swarms_torch.particle_swarm import ParticleSwarmOptimization from swarms_torch.ant_colony_swarm import AntColonyOptimization +from swarms_torch.queen_bee_swarm import QueenBeeGa diff --git a/swarms_torch/particle_swarm.py b/swarms_torch/particle_swarm.py index 85880b9..fe0b7e4 100644 --- a/swarms_torch/particle_swarm.py +++ b/swarms_torch/particle_swarm.py @@ -98,8 +98,13 @@ def update( self.global_best = self.particles[i] #update velocity - personal_attraction = self.personal_best_weight * torch.rand(self.goal.size()) * (self.personal_best[i] - self.particles[i]) - global_attraction = self.global_best_weight * torch.rand(self.goal.size()) * (self.global_best - self.particles[i]) + personal_attraction = self.personal_best_weight * torch.rand( + self.goal.size() + ) * (self.personal_best[i] - self.particles[i]) + + global_attraction = self.global_best_weight * torch.rand( + self.goal.size() + ) * (self.global_best - self.particles[i]) self.velocities[i] = self.inertia * self.velocities[i] + personal_attraction + global_attraction diff --git a/tests/ant_colony.py b/tests/ant_colony.py new file mode 100644 index 0000000..5cc06e8 --- /dev/null +++ b/tests/ant_colony.py @@ -0,0 +1,47 @@ +import unittest +import torch + +from swarms_torch import AntColonyOptimization # Import your class + +class TestAntColonyOptimization(unittest.TestCase): + + def setUp(self): + self.aco = AntColonyOptimization(goal="Hello ACO", num_ants=1000, num_iterations=10) + + def test_initialization(self): + self.assertEqual(self.aco.goal.tolist(), [ord(c) for c in "Hello ACO"]) + self.assertEqual(self.aco.pheromones.size(), torch.Size([1000])) + self.assertEqual(self.aco.pheromones.tolist(), [1.0] * 1000) + + def test_fitness(self): + solution = torch.tensor([ord(c) for c in "Hello ACO"], dtype=torch.float32) + self.assertEqual(self.aco.fitness(solution).item(), 0) # Should be maximum fitness + + def test_update_pheromones(self): + initial_pheromones = self.aco.pheromones.clone() + self.aco.solutions = [torch.tensor([ord(c) for c in "Hello ACO"], dtype=torch.float32) for _ in range(1000)] + self.aco.update_pheromones() + # After updating, pheromones should not remain the same + self.assertFalse(torch.equal(initial_pheromones, self.aco.pheromones)) + + def test_choose_next_path(self): + path = self.aco.choose_next_path() + # Path should be an integer index within the number of ants + self.assertIsInstance(path, int) + self.assertGreaterEqual(path, 0) + self.assertLess(path, 1000) + + def test_optimize(self): + solution = self.aco.optimize() + self.assertIsInstance(solution, str) + # Given enough iterations and ants, the solution should approach the goal. For short runs, this might not hold. + # self.assertEqual(solution, "Hello ACO") + + def test_invalid_parameters(self): + with self.assertRaises(ValueError): + _ = AntColonyOptimization(num_ants=-5) + with self.assertRaises(ValueError): + _ = AntColonyOptimization(evaporation_rate=1.5) + +if __name__ == "__main__": + unittest.main() diff --git a/tests/particle_swarm.py b/tests/particle_swarm.py new file mode 100644 index 0000000..f4e0b82 --- /dev/null +++ b/tests/particle_swarm.py @@ -0,0 +1,36 @@ +import unittest +import torch + +from swarms_torch import ParticleSwarmOptimization # Import your class here + +class TestParticleSwarmOptimization(unittest.TestCase): + + def setUp(self): + self.pso = ParticleSwarmOptimization(goal="Hello", n_particles=10) + + def test_initialization(self): + self.assertEqual(self.pso.goal.tolist(), [ord(c) for c in "Hello"]) + self.assertEqual(self.pso.particles.size(), (10, 5)) + self.assertEqual(self.pso.velocities.size(), (10, 5)) + + def test_compute_fitness(self): + particle = torch.tensor([ord(c) for c in "Hello"]) + fitness = self.pso.compute_fitness(particle) + self.assertEqual(fitness.item(), 1.0) + + def test_update(self): + initial_particle = self.pso.particles.clone() + self.pso.update() + # After updating, particles should not remain the same (in most cases) + self.assertFalse(torch.equal(initial_particle, self.pso.particles)) + + def test_optimize(self): + initial_best_particle = self.pso.global_best.clone() + self.pso.optimize(iterations=10) + # After optimization, global best should be closer to the goal + initial_distance = torch.norm((initial_best_particle - self.pso.goal).float()).item() + final_distance = torch.norm((self.pso.global_best - self.pso.goal).float()).item() + self.assertLess(final_distance, initial_distance) + +if __name__ == "__main__": + unittest.main() diff --git a/tests/queen_bee.py b/tests/queen_bee.py new file mode 100644 index 0000000..3e89b19 --- /dev/null +++ b/tests/queen_bee.py @@ -0,0 +1,42 @@ +import unittest +import torch +from swarms_torch import QueenBeeGa # Import the class + +class TestQueenBeeGa(unittest.TestCase): + + def setUp(self): + self.optimizer = QueenBeeGa(goal="Hello QBGA", pop_size=50) + + def test_initialization(self): + self.assertEqual(self.optimizer.goal, "Hello QBGA") + self.assertEqual(self.optimizer.gene_length, len("Hello QBGA")) + self.assertIsNone(self.optimizer.queen) + self.assertIsNone(self.optimizer.queen_fitness) + + def test_encode_decode(self): + encoded = QueenBeeGa.encode("Hello") + decoded = QueenBeeGa.decode(encoded) + self.assertEqual(decoded, "Hello") + + def test_evolution(self): + initial_population = self.optimizer.pool.clone() + self.optimizer._evolve() + self.assertFalse(torch.equal(initial_population, self.optimizer.pool)) + + def test_run(self): + initial_population = self.optimizer.pool.clone() + self.optimizer.run(max_generations=10) + self.assertNotEqual(QueenBeeGa.decode(self.optimizer.queen), QueenBeeGa.decode(initial_population[0])) + + def test_check_convergence(self): + self.optimizer.pool = torch.stack([self.optimizer.target_gene] * 50) + self.assertTrue(self.optimizer._check_convergence()) + + def test_invalid_parameters(self): + with self.assertRaises(ValueError): + _ = QueenBeeGa(mutation_prob=1.5) + with self.assertRaises(ValueError): + _ = QueenBeeGa(strong_mutation_rate=-0.5) + +if __name__ == "__main__": + unittest.main()